

 ISSN (PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-5,2016

20

ARCHITECTURES FOR ARITHMETIC OPERATIONS IN GF(2M)

USING POLYNOMIAL AND NORMAL BASIS FOR ELLIPTIC
CURVE CRYPTOSYSTEMS

Renuka H. Korti1, Dr. Vijaya C.2
1Assistant Prof. Dept of E & C, SDMCET., 2Professor, Dept of E & C, SDMCET, Dharwad, India.

E-mail: rhh_korti@yahoo.com1, vijayac26@yahoo.com2

Abstract
Elliptic Curve Cryptography (ECC) fits well
for an efficient and secure encryption scheme.
It is efficient than the ubiquitous RSA based
schemes because ECC utilizes smaller key
sizes for equivalent security. This feature of
ECC enables it to be applied to Wireless
networks where there are constraints related
to memory and computational power. Fast
and high-performance computation of finite
field arithmetic is crucial for elliptic curve
cryptography (ECC) over binary extension
fields. Two of the most common basis used in
binary fields are polynomial basis and normal
basis. The normal basis is especially known to
be more efficient than polynomial basis
because the inversion can be achieved by
performing repeated multiplication and
squaring can be executed by performing only
one cyclic shift operation. This research paper
deals with implementing and evaluating the
finite field arithmetic operation algorithms
using both polynomial basis (PB) and normal
basis (NB) representations. The Normal basis
implementation performs better than the
polynomial basis representation in terms of
area and speed.
Key words: cryptography, elliptic curve
cryptography, finite field, polynomial basis,
normal basis

I. Introduction
Modern cryptography provides essential
techniques for securing information and
protecting data. The arithmetic operations in the

Galois field GF(2m) have several applications in
coding theory such as BCH codes and Reed
Solomon error correction, computer algebra, and
cryptography algorithms such as the Rijndael
encryption algorithm and Elliptic Curve
Crytography. In these applications, time and area
efficient algorithms and hardware structures are
desired for addition, multiplication, squaring,
and inversion operations. The performance of
these operations is closely related to the
representation of the field elements. Arithmetic
in a finite field is different from standard integer
arithmetic. There are a limited number of
elements in the finite field; all operations
performed in the finite field result in an element
within that field. Finite fields are used in a
variety of applications, including in classical
coding theory in linear block codes such as BCH
codes and Reed Solomon error correction and in
cryptography.
The Elliptic Curve cryptographic system has
been proven to be stronger than known
algorithms like RSA/DSA. The efficiency of the
core Galois field arithmetic improves the
performance of elliptic curve based public key
cryptosystem implementation.
ECC uses a binary field GF(2m) or a prime field
GF(p). The encryption and decryption speed is
an important indicator for evaluating an ECC
algorithm. Efficiency of finite field arithmetic
operation has great impact on the performance of
an ECC, since an ECC computation consists a set
of point operations and field multiplication and

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN (PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-5,2016

21

field inversion are the basic operations involved
in the point operation.
The binary field GF(2m) is widely used in field
operations because it is very suitable for VLSI
implementation.
The finite field GF(2m) is a number system
containing 2m elements. Its attractiveness in
practical applications stems from the fact that
each element can be represented by m binary
digits. The practical application of error-
correcting codes makes considerable use of
computation in GF(2m). Recent advances in
secret communication, such as encryption and
decryption of digital messages, also require the
use of computation in GF(2m) [4]. Hence, there
is a need for good algorithms for doing
arithmetic operations in finite field. The most
commonly used basis are polynomial basis(PB)
and normal basis (NB)[2][3]. Normal basis [4] is
more suitable for hardware implementations than
polynomial basis since operations in normal
basis representation are mainly comprised of
rotation, shifting and exclusive-ORing which
can be efficiently implemented in hardware.
These operations are implemented on FPGA
Spartan3 tool & simulated using verilog on
Xilinx 14.5.

II. GF(2m):
The most commonly used non modular finite
field in cryptographic applications is the Galois
field 2m. The efficiency of finite field arithmetic
operations in GF(2m) is deeply relied on how
elements are represented. There exist many
algorithms for representing elements and
computing operations in this field very
efficiently. GF(2m) is called a binary finite field
because it can be represented in its multiplication
table as {0, 1}m elements. Different algorithms
make use of this binary format to manipulate
numbers the fastest. For example, addition in this
field is nothing more than XORing the array
representation of field elements. Another way of
representing GF(2m) is through a polynomial or
normal basis.

Polynomial Basis Representation:
For the polynomial basis representation, each
element of the field represents a polynomial,
 a(z) = am-1zm-1 +….+ a2z2 + a1z1+ a0z0
is associated with the binary vector a = (am-1,a2,
a1, a0) of length m.
Therefore each operation, such as addition,
subtraction, multiplication and inversion are

defined using polynomial arithmetic with the
coefficients reduced modulo 2. For example, the
bit sequence 01100101 would represent the
polynomial: x6 + x5 + x2 + 1.
Let t = m/ W, and let s = Wt - m. In software, a
may be stored in an array of t W-bit words:
Normal Basis Representation:
It is well known that there always exists a normal
basis in the finite field GF(2m) for all positive
integers m. For an α € GF(2m),{ α, α2 , α4 , ..., α
2^(m-1) } is called a normal basis of GF(2m) over
GF(2) if α, α2 , α4 , ..., and α 2^(m-1) are linearly
independent. A normal basis always exists in the
finite field GF(2m) for all positive integers m.
Every element A∈ GF(2m) can be represented as

A=ܽ଴ߙଶ
଴
+	ܽଵߙଶ

ଵ
,+	ܽଶߙଶ

ଶ
+.........+ܽ௠ିଵ	ߙଶ

௠ିଵ

...(1)
Where ܽ௜ ∈ {0,1} for i=0,1,2,....,m-1.
If 0	൑ ݅ଵ,݅ଶ ൑ ݉ െ 1 and 	݅ଵ ് ݅ଶ,there exists

j1,j2 such that the basis is called
optimal. There are two types of commonly used
optimal normal basis (ONB) which can be
defined as:

(1) Type-I ONB :m+1 is a prime p, and 2 is
a primitive modulo p.

(2) Type-II ONB: 2m+1 is a prime p and
either
(a) 2 is primitive modulo p, or
(b) p≡3 (mod 4) and the multiplicative

order of modulo p is m.
Type-1 ONB is used in the proposed work.

III. Polynomial basis arithmetic:
A. Addition
Addition of Galois field elements is performed
by bitwise XOR operation, thus requiring only t
word operations[1].

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN (PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-5,2016

22

B. Multiplication:
Multiplication is the most important arithmetic
operation and more time consuming than
addition, subtraction and squaring. The
multiplier of Finite field based on Karatsuba’s
divide and conquer algorithm:
The product of a(z) and b(z) is
a(z)b(z) = (A1 zl + A0)(B1 zl + B0) =A1B1z2l +
[(A1 + A0) (B1 + B0) + A1 B1 + A0 B0] zl +A0B0
where l = m/2 and the coefficients A0, A1, B0, B1
are binary polynomials in z of degree less than
l[1][2].

C. Squaring
Squaring a binary polynomial is a linear
operation, it is much faster than multiplying two
arbitrary polynomials[1][3].
Assume the binary polynomial is a(x) =
∑ ܽ݅
௠ିଵ
௜ୀ଴ x

i
 then the squaring formula can be

calculated using equation

 a(x)
2
 = ∑ ܽ݅

ଶሺ௠ିଵሻ
௜ୀ଴ x

i

2
 .

i.e., if a(z) = am-1zm-1 +…..+ a2z2 + a1z1+ a0,

then a(z)2 = am-1z2m-1 +….+ a2z4 + a1z2+ a0

Fig.2: Squaring a binary polynomial a(z) = am-

1zm-1 +….+ a2z2 + a1z1+ a0

Algorithm: Polynomial squaring (with word
length W = 32)
Input: A binary polynomial a(z) of degree at
most m-1.
Output: c(z) = a(z)2.
1. Pre computation: For each byte d = (d7,...,d1
,d0),
compute the 16-bit quantity
 2. for i from 0 to t – 1 do
 2.1 Let A[i]=(u3 , u2 ,u1 ,u0) where each u j
is a byte.
 2.2 C [2i]←(T(u1), T (u0)), C[2i +
1]←(T(u3), T (u2)).
 3. return(c).
D. Inversion:
The inverse of a nonzero element a in GF(2m) is
the unique element g ε GF(2m) such that ag = 1
in GF(2m), that is, ag = 1 (mod f). This inverse
element is denoted as a-1[1][3].

Algorithm: Binary Karatsuba multiplier for arbitrary m

 Input: Two elements A, B GF (2m) with m an arbitrary number, and where A and B

 can be expressed as A = X m/2 AH +AL , B = Xm/2B H + BL

 Output: A polynomial C = AB with up to 2m-1 coordinates, Where C = Xm CH + CL.

1. Procedure BK (C, A, B)

2. begin

3. k = [log2m]

4. d = m – 2k ;

5. if (d == 0) then

6. C = K mul2k (A, B)

7. return;

8. for i from 0 to d-1 do

9. MAi = Ai
L + Ai

H;

10. MBi = Bi
L + Bi

H;

11. end for

12. mul2k (CL, AL , BL);

13. mul2k (CL, AL , BL);

14. BK (CH , AH , BH);

15. for i from 0 to 2k - 2 do

16. Mi = Mi + Ci
L +Ci

H ;

17. end for

18. for i from 0 to 2k - 2 do

19. Ck+i = Ck+i + Mi ;

20. end for

21. for i from 0 to 2k - 2 do

22. Ck+i = Ck+i + Mi ;

23. end for

24. end if

25. end




Fig 1 : GF adder circuit F28

A 0

B0

A 1

B1
A 2

B2

A 7

B7

Op 0

Op 1

Op 2

Op 7

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN (PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-5,2016

23

IV. Normal Bases Arithmetic:
A. Addition:

Addition is the bitwise exclusive-or (XOR) of all
bits of the two addends. This operation is
identical to polynomial basis addition.

B. Squaring:
Squaring is a bitwise cyclic rotation . Addition
and squaring are the two simplest and fastest
operations in normal basis.
Thus, if A=(a0,a1,a2,…,am-1) then A2 =(am-
1,a0,a1,…,am-2)
Hence, squaring in GF(2m) can be realized
physically by logic circuitry which accomplishes
cyclic shifts in a binary register. Such squaring
circuitry is illustrated in block form in Fig. 1.

 Fig.3: 4-bit Squaring circuitry:

Example of squaring:

C. Multiplication:
Let x and y be the two elements in GF(2m) which
can be expressed as

X=ݔ଴ߙଶ
଴
ଶߙݔ	+

ଵ
ଶߙଶݔ	+,

ଶ
ଶߙ	௠ିଵݔ+...........+

௠ିଵ

...(2)

Y=ݕ଴ߙଶ
଴
ଶߙଵݕ	+

ଵ
ଶߙଶݕ	+,

ଶ
ଶߙ	௠ିଵݕ+.........+

௠ିଵ

...(3)

The product of both X and Y can be defined as

Z= X * Y ...(4)
Squaring in the normal basis can be performed
by cyclically shifting the elements in GF(2m) but
the multiplication is complex when compared to
other basis. Hence in order to perform the
multiplication in the normal basis conversion of

the basis is needed. The normal basis N can be
expressed as

N=	ߙଶ
଴
ଶߙ	+

ଵ
ଶߙ	+,

ଶ
ଶߙ	+.....+

௠ିଵ
..................(5)

Let us consider the generating polynomial G(X),
where G(X) is an irreducible All-One-
Polynomial of degree m and m+1 represents
relative prime 2. G(X) can be expressed as

G(x)=1+ܺଵ+ܺଶ+.......+ܺ௠ିଵ........................(6)

 denotes the root of G(X) it satisfies the ߙ
property ߙ௠ାଵ= 1. If 	ߙ௠ାଵ= 1, then the normal
basis N can simply be transformed to the
following shifted standard basis N’:

N’={ߙଵ,ߙଶ,ߙଷ,.......,ߙ௠}.................................(7)

Defining the conversion of permutation P from
the basis N to N’. The Permutation P is also
performed for X and Y and it can be expressed
as

X= ݔ଴ߙଶ
଴
ଶߙଵݔ+

ଵ
ଶߙଶݔ	+,	

ଶ
ଶߙ	௠ିଵݔ+.....+

௠ିଵ
....

………………………………………………(8)
 ௠(9)ߙ௠′ݔ+.......+ଷߙଷ′ݔ+ଶߙଶ′ݔ+ଵߙଵ′ݔ=

Y=ݕ଴ߙଶ
଴
ଶߙଵݕ	+

ଵ
ଶߙଶݕ	+,

ଶ
ଶߙ	௠ିଵݕ+.....+

௠ିଵ
..

…………………………………………….(10)

 ௠............(11)ߙ௠′ݕ+.......+ଷߙଷ′ݕ+ଶߙଶ′ݕ+ଵߙଵ′ݕ=

Where
For i=0,1,2,.......,m-1 and j=1,2,3,.....,m,
 , ௜ݔ =௝′ݔ
 , ௜ݕ =௝′ݕ
And j= 2i mod(m+1).
X and Y can be represented by the shifted
standard basis, the product Z of X and Y can be
expressed as

Z = X * Y

 B.....(12)*(௠ߙ௠′ݔ+.......+ଷߙଷ′ݔ+ଶߙଶ′ݔ+ଵߙଵ′ݔ)=
 ௠ Bߙ௠′ݔ+.......+ଷBߙଷ′ݔ+ଶBߙଶ′ݔ+ଵ Bߙଵ′ݔ =

 Each term in the above equation (12) can be
expanded and each term of the product Z can be
calculated using

+......+௠ିଶ′ݕଶ′ݔ+௠ିଵ′ݕଶ′ݔ+௠′ݕଵ′ݔ+଴′ݕ଴′ݔ)=଴′ݖ
 ଵ) mod 2′ݕ௠′ݔ

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN (PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-5,2016

24

+......+௠ିଵ′ݕଶ′ݔ+௠′ݕଶ′ݔ+଴′ݕଵ′ݔ+ଵ′ݕ଴′ݔ)=ଵ′ݖ
 ଶ) mod 2′ݕ௠′ݔ
+......+௠′ݕଶ′ݔ+଴′ݕଶ′ݔ+ଵ′ݕଵ′ݔ+ଶ′ݕ଴′ݔ)=ଶ′ݖ
 ଷ) mod 2′ݕ௠′ݔ
....
 +.......+௠ିଷ′ݕଶ′ݔ+௠ିଶ′ݕଵ′ݔ+௠ିଵ′ݕ଴′ݔ)=௠ିଵ′ݖ	
 ௠ିଵ) mod 2′ݕ௠′ݔ+଴′ݕ௠ିଵ′ݔ
+.......+௠ିଶ′ݕଶ′ݔ+௠ିଵ′ݕଵ′ݔ+ଵ′ݕ଴′ݔ)=௠′ݖ
 ଴) mod 2...........................(13)′ݕ௠′ݔ+ଵ′ݕ௠ିଵ′ݔ

Based on the generating polynomial G(X)
expressed in the equation (6) we have

 ,௠ =0ߙ+.......+ଶߙ+ଵߙ+ ߙ	+1
 ௠………....................(14)ߙ+.......+ଶߙ+ଵߙ+ߙ	=1

If ݖ′ଵ=1,then the polynomial can be summed in
to Z and is expressed as
For i = 1,2,.....,m,

௜′ݖ ൌ ൜
௜′ݖ ൅ ଴′ݖ	݂݅			2	݀݋݉	1 ൌ 1
଴′ݖ	݂݅																								௜′ݖ ൌ 0	

At the end inverse permutation p-1 is performed
in order to transform the shifted standard basis
N’ into original normal basis N as follows

 ௜ and′ݖ = ௜ݖ
i = 2j mod (m+1) for i = 1,2,....,m, and
j = 0,1,2,.....,m-1.

The final result Z can be calculated as

Z=ݖ଴ߙଶ
଴
ଶߙଵݖ+

ଵ
ଶߙଶݖ	+,	

ଶ
ଶߙ	௠ିଵݖ+.....+

௠ିଵ
......

..(15)

Fig.4 illustrates the hardware implementation of
the proposed algorithm. Permutations P1 and P2
belong to permutation P, and permutation P3
belongs to the inverse permutation P-1. The
functions of P1, P2 and P3, each with m inputs
and m outputs are defined by
Permutations p1 and p2 with inputs Ij and outputs
Oi

Oi = Ij

I = 2j mod(m+1) for i = 1,2,3......,m and j =
0,1,2,...... ,m-1
Inputs for p1 are given as
Ii = bi where,0 ≤ i ≤ m-1
Outputs for P1 are given by
bi

, = Oi where, 1 ≤ i ≤ m
apply b0

, = 0 and b0 directly to flip flop D0
Inputs for P2 are given as
Ii = ai where, 0 ≤ i ≤ m-1

Outputs from P2 are given as
ai

’ = Oi where, 1 ≤ i ≤ m-1
apply a0= 0 and a0 directly in to s0

Inverse permutation p3 with inputs Ii and outputs
Oj
Oj = Ii

j = 2i mod(m+1)

The final result C is obtained through
permutation P3. The proposed normal basis
multiplier needs m+1 2-input AND gates, 2m+1
2-input XOR gates and 3m+3 1-bit flip-flops.
The proposed sequential normal basis multiplier
is regular and expandable, and is therefore
naturally suited to VLSI
implementation[4][6][7].

Fig. 4. The proposed normal basis multiplier
in GF(2m).

D. Inversion:
Multiplicative inversion is highly complex and
most studied finite field arithmetic operation. A
novel multiplicative inversion is developed
based on the proposed normal basis multiplier.
From Fermat’s theorem, for every B € GF(2m),

= B yielding

...(16)
Fig. 5 shows the hardware implementation based
on Eq. (16). The shift register T, which
comprises m flip-flops, responds to the squaring

computation of B2, .

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN (PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-5,2016

25

Permutations P1 and P2 belong to permutation P
and P-1, respectively. The proposed algorithm for
multiplicative inverse is described below.
Algorithm:
/*computing B-1 */
Step 1: Initialization
(1) Reset all 1-bit latches in cells Ui for 0 ≤ i ≤ m
to 0s.
(2) Load operand B into shift register T.
Step 2: Deriving B2
(1) Shift T to left by one bit.
(2) D0 = 0, load D with T through permutation
P1.
(3) Do not shift D.
(4) S0 = 1
(5) Load final B2 into shift register S.
(6) S0 = 0
Step 3: Squaring and multiplication
(1) Shift T to left by one bit.
(2) D0 = 0; load D with T through permutation
P1.
(3) Shift D and S one bit for each clock cycle.
After m+1 clock cycles, obtain D*S and store it
in S.
Step 4: Repeat Step 3 m-3 times. Determine the
final result of B-1 from the output of permutation
P2.

Fig. 5:The proposed normal basis
multiplicative inverter in GF(2m).

The proposed inverter is regular and modular,
making it very attractive for VLSI
implementation. The proposed inverter provides
better time-area complexity for the larger value
of m[5][8].

V. Results
Results of Polynomial basis arithmetic
a) Simulation done for two inputs (1100) 12 &

(1000) 8.
Addition (00) = (00000100)

Multiplication (01) = (01100000)
Squaring (10) = (01010000)
Inversion (11) = (10110000)

Fig.6: Simulation done for two inputs 12 & 8

Results of Normal basis arithmetic:

Fig.7: Waveform of normal basis multiplier.

Fig. 8: Waveform of normal basis squaring

and multiplicative inverse.

VI. Conclusion
We have implemented finite field arithmetic
operations, i.e. addition, squaring, multiplication
and inverse algorithms, on both polynomial basis
and normal basis representations over GF(2m).
PB multipliers own the major features of
simplicity, regularity, and modularity. The

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN (PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-5,2016

26

normal basis is especially known to be more
efficient than polynomial basis because the
inversion can be achieved by performing
repeated multiplication and squaring can be
executed by performing only one cyclic shift
operation. Thus, are Very suitable for VLSI
implementation.

Acknowledgement
I am highly obliged to the Management,
Principal and HOD, Department of Electronics
and Communication Engineering, SDM College
of Engineering and Technology for providing me
with the facilities being required .

References
[1] Darrel Hankerson, Scott Vanstone, Alfred J.
Menezes“Guide to Elliptic Curve Cryptography”
[2] Sameh M. Shohdy, Ashraf B. El-Sisi, and
Nabil Ismail “Hardware Implementation of
Efficient Modified Karatsuba Multiplier Used in
Elliptic Curves” International Journal of
Network Security, Vol.11, No.3, PP.155–162,
Nov. 2010
 [3] Vijaylaxmi Hiremath, Renuka Korti
“Implementation of finite field arithmetic unit
for cryptographic applications”, Proceedings of
AECE-IRAJ International Conference, Tirupati,
India, pp.70-74, 14th July 2013
[4] Reyhani-Masoleh, A. and Hasan, M. A., “A
New Construction of Massey-Omura Parallel
Multiplier over GF(2m),” IEEE Trans.
Computers, Vol. 51, pp. 511-520 (2002).
[5] Wang, C. C., Truong, T. K., Shao, H. M.,
Deutsch, L.J., Omura, J. K. and Reed, I. S.,
“VLSI Architectures for Computing

Multiplications and Inverses in GF(2m),” IEEE
Trans.Computers,Vol.C-34, pp. 709-717 (1985).
[6] Reyhani-Masoleh, A. and Hasan, M. A., “A
New Construction of Massey-Omura Parallel
Multiplier over GF(2m),” IEEE Trans.
Computers, Vol. 51, pp. 511-520 (2002).
[7] Hasan, M. A.,Wang, M. and Bhargava, V. K.,
“Modular Construction of Low Complexity
Parallel Multipliers for a Class of Finite Fields
GF(2m),” IEEE Trans.Computers, Vol. 41, pp.
962 - 971 (1992).
[8] Jyoti N. D., Renuka Korti “Performance
analysis of multiplication and inversion
algorithm over GF(2m) for coding and
cryptographic applications, IJAREST, Volume
03 Issue 04, April-2016

