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Abstract 
Elliptic Curve Cryptography (ECC) fits well 
for an efficient and secure encryption scheme. 
It is efficient than the ubiquitous RSA based 
schemes because ECC utilizes smaller key 
sizes for equivalent security. This feature of 
ECC enables it to be applied to Wireless 
networks where there are constraints related 
to memory and computational power. Fast 
and high-performance computation of finite 
field arithmetic is crucial for elliptic curve 
cryptography (ECC) over binary extension 
fields. Two of the most common basis used in 
binary fields are polynomial basis and normal 
basis. The normal basis is especially known to 
be more efficient than polynomial basis 
because the inversion can be achieved by 
performing repeated multiplication and 
squaring can be executed by performing only 
one cyclic shift operation. This research paper 
deals with implementing and evaluating the 
finite field arithmetic operation algorithms 
using both polynomial basis (PB) and normal 
basis (NB) representations. The Normal basis 
implementation performs better than the 
polynomial basis representation in terms of 
area and speed. 
Key words: cryptography, elliptic curve 
cryptography, finite field, polynomial basis, 
normal basis 

I. Introduction 
Modern cryptography provides essential 
techniques for securing information and 
protecting data. The arithmetic operations in the 

Galois field GF(2m) have several applications in 
coding theory such as BCH codes and Reed 
Solomon error correction, computer algebra, and 
cryptography algorithms such as the Rijndael 
encryption algorithm and Elliptic Curve 
Crytography. In these applications, time and area 
efficient algorithms and hardware structures are 
desired for addition, multiplication, squaring, 
and inversion operations. The performance of 
these operations is closely related to the 
representation of the field elements. Arithmetic 
in a finite field is different from standard integer 
arithmetic. There are a limited number of 
elements in the finite field; all operations 
performed in the finite field result in an element 
within that field. Finite fields are used in a 
variety of applications, including in classical 
coding theory in linear block codes such as BCH 
codes and Reed Solomon error correction and in 
cryptography. 
The Elliptic Curve cryptographic system has 
been proven to be stronger than known 
algorithms like RSA/DSA. The efficiency of the 
core Galois field arithmetic improves the 
performance of elliptic curve based public key 
cryptosystem implementation. 
ECC uses a binary field GF(2m) or a prime field 
GF(p). The encryption and decryption speed is 
an important indicator for evaluating an ECC 
algorithm. Efficiency of finite field arithmetic 
operation has great impact on the performance of 
an ECC, since an ECC computation consists a set 
of point operations and field multiplication and 
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field inversion are the basic operations involved 
in the point operation. 
The binary field GF(2m) is widely used in field 
operations because it is very suitable for VLSI 
implementation. 
The finite field GF(2m) is a number system 
containing 2m elements. Its attractiveness in 
practical applications stems from the fact that 
each element can be represented by m binary 
digits. The practical application of error-
correcting codes makes considerable use of 
computation in GF(2m). Recent advances in 
secret communication, such as encryption and 
decryption of digital messages, also require the 
use of computation in GF(2m) [4]. Hence, there 
is a need for good algorithms for doing 
arithmetic operations  in finite field. The most 
commonly used basis are polynomial basis(PB) 
and normal basis (NB)[2][3]. Normal basis [4] is 
more suitable for hardware implementations than 
polynomial basis since operations in normal 
basis representation are mainly comprised of 
rotation, shifting and exclusive-ORing which 
can be efficiently implemented in hardware. 
These operations are implemented on FPGA 
Spartan3 tool & simulated using verilog on 
Xilinx 14.5. 
 

II. GF(2m): 
The most commonly used non modular finite 
field in cryptographic applications is the Galois 
field 2m. The efficiency of finite field arithmetic 
operations in GF(2m) is deeply relied on how 
elements are represented. There exist many 
algorithms for representing elements and 
computing operations in this field very 
efficiently. GF(2m) is called a binary finite field 
because it can be represented in its multiplication 
table as {0, 1}m elements. Different algorithms 
make use of this binary format to manipulate 
numbers the fastest. For example, addition in this 
field is nothing more than XORing the array 
representation of field elements. Another way of 
representing GF(2m) is through a polynomial or 
normal basis. 
 
Polynomial Basis Representation: 
For the polynomial basis representation, each 
element of the field represents a polynomial, 
 a(z) = am-1zm-1 +….+ a2z2 + a1z1+ a0z0 
is associated with the binary vector a = (am-1,a2, 
a1, a0) of length m. 
Therefore each operation, such as addition, 
subtraction, multiplication and inversion are 

defined using polynomial arithmetic with the 
coefficients  reduced modulo 2. For example, the 
bit sequence 01100101 would represent the 
polynomial:     x6 + x5 + x2 + 1. 
Let t = m/ W, and let s = Wt - m. In software, a 
may be stored in an array of  t W-bit words: 
Normal Basis Representation: 
It is well known that there always exists a normal 
basis in the finite field GF(2m) for all positive 
integers m. For an α € GF(2m),{ α, α2 , α4 , ..., α 
2^(m-1) } is called a normal basis of GF(2m) over 
GF(2) if α, α2 , α4 , ..., and  α 2^(m-1) are linearly 
independent. A normal basis always exists in the 
finite field GF(2m) for all positive integers m. 
Every element  A∈ GF(2m) can be represented as 

A=ܽ଴ߙଶ
଴
+	ܽଵߙଶ

ଵ
,+	ܽଶߙଶ

ଶ
+.........+ܽ௠ିଵ	ߙଶ

௠ିଵ

.....................................................................(1) 
Where ܽ௜ ∈ {0,1} for i=0,1,2,....,m-1. 
If  0	൑ ݅ଵ,݅ଶ ൑ ݉ െ 1 and 	݅ଵ ് ݅ଶ,there exists 

j1,j2 such that  the basis is called 
optimal. There are two types of commonly used 
optimal normal basis (ONB) which can be 
defined as: 

(1) Type-I ONB :m+1  is a prime p, and 2 is 
a primitive modulo p. 

(2) Type-II ONB: 2m+1 is a prime p and 
either 
(a) 2 is primitive modulo p, or 
(b) p≡3 (mod 4) and the multiplicative 

order of modulo p is m. 
Type-1 ONB is used in the proposed work. 
 

III. Polynomial basis arithmetic: 
A. Addition 
Addition of Galois field elements is performed 
by bitwise XOR operation, thus requiring only t 
word operations[1]. 
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B. Multiplication: 
Multiplication is the most important arithmetic 
operation and more time consuming than 
addition, subtraction and squaring. The 
multiplier of Finite field based on Karatsuba’s 
divide and conquer algorithm: 
The product of a(z) and b(z) is 
a(z)b(z) = (A1 zl + A0)(B1 zl + B0)  =A1B1z2l + 
[(A1 + A0) (B1 + B0) + A1 B1 + A0 B0] zl +A0B0           
where l = m/2 and the coefficients A0, A1, B0, B1 
are binary polynomials in z of degree less than 
l[1][2]. 

 

C. Squaring 
Squaring a binary polynomial is a linear 
operation, it is much faster than multiplying two 
arbitrary polynomials[1][3]. 
Assume the binary polynomial is a(x) = 
∑ ܽ݅
௠ିଵ
௜ୀ଴ x

i
 then the squaring formula can be 

calculated using equation  

      a(x)
2
 = ∑ ܽ݅

ଶሺ௠ିଵሻ
௜ୀ଴ x

i

2
 . 

i.e., if a(z) = am-1zm-1 +…..+ a2z2 + a1z1+ a0, 

then a(z)2   = am-1z2m-1 +….+ a2z4 + a1z2+ a0 

 
Fig.2: Squaring a binary polynomial a(z) = am-

1zm-1 +….+ a2z2 + a1z1+ a0 

Algorithm: Polynomial squaring (with word 
length W = 32) 
Input: A binary polynomial a(z) of degree at 
most m-1. 
Output: c(z) = a(z)2. 
1.   Pre computation: For each byte d = (d7,...,d1 
,d0),  
compute the 16-bit quantity 
 2.    for i from 0 to t – 1 do 
     2.1 Let A[i ]=(u3 , u2 ,u1 ,u0) where each  u j 
is a byte. 
     2.2 C [2i ]←(T(u1), T (u0 )), C[2i + 
1]←(T(u3), T (u2)). 
 3.   return(c). 
D. Inversion: 
The inverse of a nonzero element a in GF(2m) is 
the unique element g ε GF(2m) such that ag = 1 
in GF(2m), that is, ag = 1 (mod f). This inverse 
element is denoted as a-1[1][3]. 

 

Algorithm: Binary Karatsuba multiplier for arbitrary m 

 Input: Two elements A, B   GF (2m) with m an arbitrary number, and where A and B           

             can be expressed as A = X m/2 AH +AL , B = Xm/2B H + BL 

 Output: A polynomial C = AB with up to 2m-1    coordinates, Where C = Xm CH + CL. 

1. Procedure BK (C, A, B) 

2. begin 

3. k = [log2m] 

4. d = m – 2k ; 

5. if (d == 0) then 

6. C = K mul2k (A, B) 

7. return; 

8. for i from 0 to d-1 do 

9. MAi = Ai
L + Ai

H; 

10. MBi = Bi
L + Bi

H; 

11. end for 

12. mul2k (CL, AL , BL ); 

13. mul2k (CL, AL , BL ); 

14. BK (CH , AH , BH ); 

15. for i from 0 to 2k - 2 do 

16. Mi = Mi + Ci
L +Ci

H ; 

17. end for 

18. for i from 0 to 2k - 2 do 

19. Ck+i = Ck+i + Mi ; 

20. end for 

21. for i from 0 to 2k - 2 do 

22. Ck+i = Ck+i + Mi ; 

23. end for 

24. end if 

25. end 
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Fig 1  :  GF adder circuit F28
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IV. Normal Bases Arithmetic: 
A. Addition: 

Addition is the bitwise exclusive-or (XOR) of all 
bits of the two addends. This operation is 
identical to polynomial basis addition.  
 

B. Squaring: 
Squaring is a bitwise cyclic rotation . Addition 
and squaring are the two simplest and fastest 
operations in normal basis. 
Thus, if A=(a0,a1,a2,…,am-1 ) then A2 =(am-
1,a0,a1,…,am-2) 
Hence, squaring in GF(2m) can be realized 
physically by logic circuitry which accomplishes 
cyclic shifts in a binary register. Such squaring 
circuitry is illustrated in block form in Fig. 1. 
 

 
           Fig.3: 4-bit Squaring circuitry: 
 
Example of squaring: 

 
 

C. Multiplication: 
Let x and y be the two elements in GF(2m) which 
can be expressed as 
 

X=ݔ଴ߙଶ
଴
ଶߙݔ	+

ଵ
ଶߙଶݔ	+,

ଶ
ଶߙ	௠ିଵݔ+...........+

௠ିଵ

.......................................................................(2) 
 

Y=ݕ଴ߙଶ
଴
ଶߙଵݕ	+

ଵ
ଶߙଶݕ	+,

ଶ
ଶߙ	௠ିଵݕ+.........+

௠ିଵ

.......................................................................(3) 
 
The product of both X and Y can be defined as 
 
Z= X * Y   .........................................(4) 
Squaring in the normal basis can be performed 
by cyclically shifting the elements in GF(2m) but 
the multiplication is complex when compared to 
other basis. Hence in order to perform the 
multiplication in the normal basis conversion of 

the basis is needed. The normal basis N can be 
expressed as  
 

N=	ߙଶ
଴
ଶߙ	+

ଵ
ଶߙ	+,

ଶ
ଶߙ	+.....+

௠ିଵ
..................(5) 

 
Let us consider the generating polynomial G(X), 
where G(X) is an irreducible All-One-
Polynomial of degree m and m+1 represents 
relative prime 2. G(X) can be expressed as 
 
G(x)=1+ܺଵ+ܺଶ+.......+ܺ௠ିଵ........................(6) 
 
 denotes the root of G(X) it satisfies the ߙ
property ߙ௠ାଵ= 1. If 	ߙ௠ାଵ= 1, then the normal 
basis N can simply be transformed to the 
following shifted standard basis N’: 
 
N’={ߙଵ,ߙଶ,ߙଷ,.......,ߙ௠}.................................(7) 
 
Defining the conversion of permutation P from 
the basis N to N’. The Permutation P is also 
performed for X and Y and it can be expressed 
as   
 

X= ݔ଴ߙଶ
଴
ଶߙଵݔ+

ଵ
ଶߙଶݔ	+,	

ଶ
ଶߙ	௠ିଵݔ+.....+

௠ିଵ
.... 

………………………………………………(8) 
 ௠ ..........(9)ߙ௠′ݔ+.......+ଷߙଷ′ݔ+ଶߙଶ′ݔ+ଵߙଵ′ݔ=    
 

Y=ݕ଴ߙଶ
଴
ଶߙଵݕ	+

ଵ
ଶߙଶݕ	+,

ଶ
ଶߙ	௠ିଵݕ+.....+

௠ିଵ
.. 

…………………………………………….(10) 
   
 ௠............(11)ߙ௠′ݕ+.......+ଷߙଷ′ݕ+ଶߙଶ′ݕ+ଵߙଵ′ݕ=
 
Where 
For  i=0,1,2,.......,m-1 and j=1,2,3,.....,m, 
 , ௜ݔ =௝′ݔ
  , ௜ݕ =௝′ݕ
And j= 2i  mod(m+1). 
X and Y can be represented by the shifted 
standard basis, the product Z of X and Y can be 
expressed as 
 
Z = X * Y 
   
 B.....(12)*(௠ߙ௠′ݔ+.......+ଷߙଷ′ݔ+ଶߙଶ′ݔ+ଵߙଵ′ݔ)=
 ௠ Bߙ௠′ݔ+.......+ଷBߙଷ′ݔ+ଶBߙଶ′ݔ+ଵ Bߙଵ′ݔ =   
 
 Each term in the above equation (12) can be 
expanded and each term of the product Z can be 
calculated using 
 
+......+௠ିଶ′ݕଶ′ݔ+௠ିଵ′ݕଶ′ݔ+௠′ݕଵ′ݔ+଴′ݕ଴′ݔ)=଴′ݖ
 ଵ ) mod 2′ݕ௠′ݔ
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+......+௠ିଵ′ݕଶ′ݔ+௠′ݕଶ′ݔ+଴′ݕଵ′ݔ+ଵ′ݕ଴′ݔ)=ଵ′ݖ
 ଶ )  mod 2′ݕ௠′ݔ
+......+௠′ݕଶ′ݔ+଴′ݕଶ′ݔ+ଵ′ݕଵ′ݔ+ଶ′ݕ଴′ݔ)=ଶ′ݖ
 ଷ )  mod 2′ݕ௠′ݔ
.... 
 +.......+௠ିଷ′ݕଶ′ݔ+௠ିଶ′ݕଵ′ݔ+௠ିଵ′ݕ଴′ݔ)=௠ିଵ′ݖ	
 ௠ିଵ )  mod 2′ݕ௠′ݔ+଴′ݕ௠ିଵ′ݔ
+.......+௠ିଶ′ݕଶ′ݔ+௠ିଵ′ݕଵ′ݔ+ଵ′ݕ଴′ݔ)=௠′ݖ
 ଴ )  mod 2...........................(13)′ݕ௠′ݔ+ଵ′ݕ௠ିଵ′ݔ
 
Based on the generating polynomial G(X) 
expressed in the equation (6) we have 
 
  ,௠ =0ߙ+.......+ଶߙ+ଵߙ+ ߙ	+1
 ௠………....................(14)ߙ+.......+ଶߙ+ଵߙ+ߙ	=1
 
If  ݖ′ଵ=1,then the polynomial can be summed in 
to Z and is expressed as 
For i = 1,2,.....,m, 

௜′ݖ ൌ ൜
௜′ݖ ൅ ଴′ݖ	݂݅			2	݀݋݉	1 ൌ 1
଴′ݖ	݂݅																								௜′ݖ ൌ 0	

  

  
At the end inverse permutation p-1 is performed 
in order to transform the shifted standard basis 
N’ into original normal basis N as follows 
 
 ௜ and′ݖ = ௜ݖ
i = 2j  mod (m+1) for i = 1,2,....,m,  and  
j = 0,1,2,.....,m-1. 
 
The final result Z can be calculated as 
 

Z=ݖ଴ߙଶ
଴
ଶߙଵݖ+

ଵ
ଶߙଶݖ	+,	

ଶ
ଶߙ	௠ିଵݖ+.....+

௠ିଵ
......

....................................................................(15) 
  
Fig.4 illustrates the hardware implementation of 
the proposed algorithm. Permutations P1 and P2 
belong to permutation P, and permutation P3 
belongs to the inverse permutation P-1. The 
functions of P1, P2 and P3, each with m inputs 
and m outputs are defined by 
Permutations p1 and p2 with inputs Ij and outputs 
Oi 

Oi = Ij 

I = 2j mod(m+1) for i = 1,2,3......,m and j = 
0,1,2,...... ,m-1 
Inputs for p1 are given as 
Ii = bi where,0 ≤ i ≤ m-1 
Outputs for P1 are given by 
bi 

, = Oi  where, 1 ≤ i ≤ m 
apply b0

, = 0 and b0 directly to flip flop D0 
Inputs for P2 are given as  
Ii = ai  where, 0 ≤ i ≤ m-1 

Outputs from P2 are given as 
ai

’ = Oi  where, 1 ≤ i ≤ m-1 
apply a0= 0 and a0 directly in to s0 

 
Inverse permutation p3 with inputs Ii and outputs 
Oj  
Oj  = Ii 

j = 2i mod(m+1) 
 
The final result C is obtained through 
permutation P3. The proposed normal basis 
multiplier needs m+1 2-input AND gates, 2m+1 
2-input XOR gates and 3m+3 1-bit flip-flops. 
The proposed sequential normal basis multiplier 
is regular and expandable, and is therefore 
naturally suited to VLSI 
implementation[4][6][7]. 
 

 
 
Fig. 4. The proposed normal basis multiplier 
in GF(2m). 
 

D. Inversion: 
Multiplicative inversion is highly complex and 
most studied finite field arithmetic operation. A 
novel multiplicative inversion is developed  
based on the proposed normal basis multiplier.    
From Fermat’s theorem, for every B € GF(2m), 

= B yielding 

.....................................................................(16) 
Fig. 5 shows the hardware implementation based 
on Eq. (16). The shift register T, which 
comprises m flip-flops, responds to the squaring 

computation of B2, . 
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Permutations P1 and P2 belong to permutation P 
and P-1, respectively. The proposed algorithm for 
multiplicative inverse is described below. 
Algorithm: 
/*computing B-1 */ 
Step 1: Initialization 
(1) Reset all 1-bit latches in cells Ui for 0 ≤ i ≤ m 
to 0s. 
(2) Load operand B into shift register T. 
Step 2: Deriving B2 
(1) Shift T to left by one bit. 
(2) D0 = 0, load D with T through permutation 
P1. 
(3) Do not shift D. 
(4) S0 = 1 
(5) Load final B2 into shift register S. 
(6) S0 = 0 
Step 3: Squaring and multiplication 
(1) Shift T to left by one bit. 
(2) D0 = 0; load D with T through permutation 
P1. 
(3) Shift D and S one bit for each clock cycle. 
After m+1 clock cycles, obtain D*S and store it 
in S. 
Step 4: Repeat Step 3 m-3 times. Determine the 
final result of B-1 from the output of permutation 
P2. 
 

 
Fig. 5:The proposed normal basis 
multiplicative inverter in GF(2m). 
 
The proposed inverter is regular and modular, 
making it very attractive for VLSI 
implementation. The proposed inverter provides 
better time-area complexity for the larger value 
of m[5][8].   

V. Results  
Results of Polynomial basis arithmetic 
a) Simulation done for two inputs (1100) 12 & 

(1000) 8.  
Addition (00) = (00000100) 

Multiplication (01) = (01100000) 
Squaring (10) = (01010000) 
Inversion (11) = (10110000)  

 
Fig.6: Simulation done for two inputs 12 & 8 
 
Results of Normal basis arithmetic: 

 
Fig.7:   Waveform  of normal basis multiplier. 
 

 
Fig. 8: Waveform  of normal basis squaring 

and multiplicative inverse. 
 

VI. Conclusion 
We have implemented finite field arithmetic 
operations, i.e. addition, squaring, multiplication 
and inverse algorithms, on both polynomial basis 
and normal basis representations over GF(2m). 
PB multipliers own the major features of 
simplicity, regularity, and modularity. The 
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normal basis is especially known to be more 
efficient than polynomial basis because the 
inversion can be achieved by performing 
repeated multiplication and squaring can be 
executed by performing only one cyclic shift 
operation. Thus, are Very suitable for VLSI 
implementation. 
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