

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-3,2016

32

HOW DOES SPARK STREAMING FIT INTO THE EIGHT
REQUIREMENTS OF REAL TIME STREAM PROCESSING

Merlyn Mary Michael1, Jayakrishna V2
Amal Jyothi College of Engineering, Kerala, India

Email: merlynmarymichael@cs.ajce.in1, vjayakrishna@cs.ajce.in2
Abstract
The demand for stream processing is
increasing these days. The reason is that,
organizations need to process data fast to
react to changing business needs and
conditions on real time. The value of stream
processing systems mainly come from the
timeliness of the results that they can provide.
Today, stream processing finds its application
in almost every industry - wherever stream
data is generated through human activities,
machine data or sensors data. Many
distributed stream processing frameworks are
currently available. This paper evaluates the
stream processing framework Spark
Streaming to identify how well it fits into the
eight requirements of real time stream
processing proposed by [3].
Index Terms: micro batches, real time, stream
processing, Spark Streaming.

I. INTRODUCTION
Big data is a very popular term these days. It is
mainly characterized by the three V's - Volume,
Variety and Velocity. Volume refers to the
quantity of data. Variety refers to the range of
data types and sources. While velocity
determines how fast the data is generated and
processed to meet the demands. Stream
processing is about the velocity aspect of big
data. Some business problems that can be solved
using Stream processing are fraud detection,
pricing and analytics, intelligence and
surveillance. The streams of data are
accumulated from different sources and are
considered most valuable when they arrive. So it
makes sense to process these data as soon as they
arrive using real time streaming analytics.

II. BACKGROUND
Many stream processing frameworks are

currently available. From the Apache landscape
three major frameworks that are available for
stream processing are Spark Streaming, Storm
and Samza. Their major traits are summarized in
the Table I.
A. Spark Streaming Model

 In general Spark Streaming model works as
follows:
 Spark Streaming can ingest data from multiple
sources.

Features

Real Time Stream Processing Systems

Spark
Streaming

Storm Samza

Stream
Processing
Model

Microbatching Native Native

Programming
Model

Declarative Compositional Compositi
onal

Data
Guarantees

Exactly once Atleast once Atleast
once

Maturity High High Medium
Latency Medium Very low Low
Throughput High Low High

Table. I
like Kafka, Flume, Kinesis, Twitter or even tcp
sockets. The data is then processed using the high
level algorithms. And the processed data is
finally pushed to dashboards, filesystems or
HDFS. Spark Streaming model is illustrated in
Fig.1.

Spark Streaming uses a microbatching method
for processing data streams. As data arrives, it
forms microbatches over intervals of time. Each
microbatch forms an RDD, the major abstraction
in Spark. RDD is an immutable distributed

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-3,2016

33

collection of objects. RDDs are partitioned and
computed across multiple nodes in a cluster in
parallel. RDD is the concept of Spark that
supports the main features of failure recovery,
scalability load balancing.

B. Spark Streaming Components

The architecture of Spark Streaming is shown in
Fig.2.
The components are briefly described below: A
Spark Streaming application will have a driver
program that has the main method. A Streaming
Context is an object defined to specify the
processing to be applied to the streams of data
that continuously arrive.
Driver: Connects to the cluster manager to
request for resources. It is also responsible for
creating DAG of tasks corresponding to
streaming job and submitting it to the cluster for
execution.
Cluster Managers: Spark can work with a
Standalone cluster manager, Mesos or YARN.
They are responsible for allocating resources for
execution.

Fig. 1 Spark Streaming Model

Fig. 2 Spark Streaming Architecture

Workers: These are the nodes where the
execution happens. They have executors that

execute tasks and have cache to support the task
execution.
Receiver: In a Spark Streaming application the
major component is the receiver, that is a task
that runs throughout the application life time, to
receive streams of data. They run within an
executor in a worker node.

The following sections describe each of the
eight requirements of a Real Time Stream
processing System [ref] and illustrates the
features of Spark Streaming that best fits into
those requirements. The features of Spark
Streaming are assessed in terms of the version
1.6.

RULE I
The first requirement for a real-time stream
processing system is to process messages “in-
stream”, without any requirement to store them
to perform any operation or sequence of
operations. Ideally the system should also use
an active (i.e., non-polling) processing model
[3].

This requirement suggests that a real time
stream processing system should be an active
system that is data/event driven and should avoid
storing data to disk before the data is processed.
This is because accesses to disk can introduce
unwanted latencies in the processing, which
would badly impact the timeliness of the results.
Spark streaming achieves this goal by making use
of in-memory computations in a large cluster in a
fault tolerant manner. It uses an abstraction called
RDD for this purpose. an RDD is a read-only,
partitioned collection of records. RDDs are fault-
tolerant, parallel data structures that allows users
to explicitly persist intermediate results in
memory, control their partitioning to optimize
data placement, and manipulate them using a rich
set of operators. This in memory computations
offer Spark Streaming a great speed up and
allows it to deliver results with minimum latency.
Streams of data can be processed in two ways.
One is the native method while the other is the
micro batching method. In native method each
record or event is processed one by one as it
arrives in the stream.
While in microbatching method, streams of data
that arrive are grouped to small batches over
predetermined batch intervals. All the data that

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-3,2016

34

form a microbatch are processed together. Spark
Streaming uses the microbatching method, where
an RDD is formed out of a microbatch of data
and is partitioned across the cluster of machines
to be processed in parallel (in-memory). Thus in
Spark Streaming the real time data streams are
converted to DStreams (discretized streams) and
processed. These DStreams are in turn a
collection of RDDs.

RULE II
The second requirement is to support a high-level
“StreamSQL” language with built-in extensible
stream oriented primitives and operators [3].

This requirement suggests the need to have a
high level language (with a rich set of stream
specific operators) for processing continuous
streams of data. This would greatly reduce
development cycles and maintenance costs for
streaming applications.

Spark streaming which is an extension to the
Spark Core provides high level APIs in Java,
Scala, Python and R. In general it provides a
Declarative API with high order functions or
operators. This makes programming easier, as the
programmer does not have to deal with the low
level details as the system would internally create
and optimize the topology.

Spark Streaming handles data streams as
DStreams (discretized streams). And it supports
a rich set of transformation and output operations
that can process or modify the DStreams. Some
common transformation functions available on
DStreams are map, flatMap, reduceByKey,
cogroup etc. A number of output operations are
also supported on DStreams. Output operations
trigger the actual execution of all the DStream
transformations and allows DStream’s data to be
pushed out to external systems. Some examples
of the output operations are print,
saveAsTextFiles, saveAsHadoopFiles etc. Spark
Streaming also provides windowed
computations, which allows to apply
transformations over a sliding window of data.
the concept of windowed operations can be
visualized as in
Fig.3.

Fig. 3 Windowed Operations

Some commonly used window operations are
reduce By Window, reduce By Key And
Window.

In addition to the transformations and output
operations listed above, Spark provides an
additional module Spark SQL for structured data
processing. There are a number of ways to
interact with Spark SQL, which include SQL,
Data Frames API and Data Sets API. All these
interactions work on the same optimized Spark
SQL engine. SQL interface allows to interact
with datasets using basic sql syntax or hiveql
queries. Data Frames API allows access to data
in form of data frames, that organize distributed
collections of data as named columns. Data Sets
API is a new experimental addition in Spark 1.6.

Thus Spark streaming with its API and Spark
SQL provides an extensible set of operators that
can process stream data to retrieve intelligence
from it.

RULE III
The third requirement is to have built-in
mechanisms to provide resiliency against stream
“imperfections”, including missing and out-of-
order data, which are commonly present in real-
world data streams [3].

The two main notions in time in streaming are:
event time and processing time.

Event time: is the time at which an event
happened or the event was created in the real
world. Usually a time stamp is encoded with the
data when it is created.

Processing time: is the time measured by a
machine that runs the stream processing
application to process the event

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-3,2016

35

 Mostly in networks there will be a difference
between event and processing times, introduced
due to many reasons, like network delays, data
rate spikes etc. This causes out of order data. As
in real-time systems, data is never stored, the
infrastructure must make provisions for handling
data that is delayed, missing, or out-of-sequence.
Spark currently does not support this feature but
its future version will come up with the
capabilities to handle event time and out of order
data. It will give support for the concepts of
'event time' and 'slack' durations to help manage
stream imperfections.

RULE IV
The fourth requirement is that a stream
processing engine must guarantee predictable
and repeatable outcomes [3].

Traditional stream processing systems use a
continuous operator model. But in that model its
difficult to handle features like quick fault
recovery, load balancing etc. Spark Streaming
uses a different model wherein it structures
computations as a set of short, stateless
deterministic tasks on RDD partitions that are
distributed across the cluster. DStreams and
RDDs track a lineage for fault recovery and for
handling stragglers. A lineage is basically a graph
of deterministic operations used to build a
DStream/RDD. Lineages are tracked at the level
of partitions. Thus if a node fails, the RDD
partitions that were running on it can be rebuilt
by using the information in the lineage. That is in
case of failures the partitions on the node will be
recomputed by re running the tasks in the lineage,
on the original data (of the partition).

For stateful operations checkpointing is
enabled by default. When checkpointing is
enabled, lineages are not allowed to grow
indefinitely. This is done by removing the parts
of the lineage once checkpointing is done.

Thus with the features of lineages and
checkpointing Spark Streaming ensures
predictable and repeatable outcomes.

RULE V
The fifth requirement is to have the capability to
efficiently store, access, and modify state
information, and combine it with live streaming

data. For seamless integration, the system should
use a uniform language when dealing with either
type of data [3].

A very common application for this would be
in fraud detection, in transactions. For doing this
effectively, the usual transaction pattern should
be learned and stored as a signature and when a
new transaction arrives on real time, it has to
compared against the stored signature. If a
difference is detected during the comparison, a
fraud is detected. For doing this in real time,
stream processing systems should be capable to
well integrate with stored data.

Spark Streaming integrates well with Hadoop
and most of the available NoSql stores. The main
programming abstraction in Spark Streaming, the
DStream or RDDs allow batch and streaming
workloads to interoperate seamlessly. Users can
apply arbitrary Spark functions on each batch of
streaming data: for example, an RDD can be
formed from a static data set (say a file on HDFS)
and this can be easily joined with a DStream
using the 'join' operator, as shown in the example:

val filerdd = sparkContext.hadoopFile("file to
be joined") kafkaDStream.transform
{batchRDD=> batchRDD.join(filerdd).filter(..)}

Another common example found in production
is Spark Streaming's integration with the
Cassandra store.
DataStax has provided a Spark-Cassandra
connector that can enable Spark Streaming to
effectively communicate with Cassandra. This
connector handles type conversions between the
two and also internally aligns Spark partitions
with that of Cassandra partitions to get great
performance for reads and writes. The
configuration parameters of the connector,
Cassandra and Spark Streaming should be
intelligently tweaked to get the desired
performance for the application.

Spark's concept of RDD and microbatching helps
it very well integrate streaming and batch data for
real time analytics.

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-3,2016

36

RULE VI
The sixth requirement is to ensure that the
applications are up and available, and the
integrity of the data maintained at all times,
despite failures [3].

One major advantage of Spark Streaming is
that it provides strong fault tolerance. As long as
the input data is stored reliably, Spark Streaming
will always offer “exactly once” semantics. (i.e.,
as if all of the data was processed without any
nodes failing), even if workers, driver or receiver
fails in between.

Spark Streaming ensures its exactly once
semantics, by supporting driver, worker and
receiver fault-tolerance.

A. Driver Fault tolerance
In order to ensure that the driver program is up
and running all the time, check pointing should
be enabled. Check pointing allows to save data
periodically to a reliable storage like HDFS.
Check pointing keeps track of the state of the
program, so if it crashes in between, Spark
Streaming can read how far the previous run of
the program got in processing the data and take
over from there.
When Spark Streaming works with the
Standalone cluster manager, we can make use of
the --supervise flag to ensure that the driver
program restarts automatically if it crashes.

B. Worker Fault Tolerance
For worker fault tolerance Spark Streaming
utilizes the RDD lineages. In between if a worker
node fails, the RDD partitions on it can be
recovered by using the information in the
lineage. That is all the tasks in the linage will be
re run on the original RDD partition data to get
back to the RDD state at which the node had
failed.

C. Receiver Fault Tolerance

In Spark Streaming a receiver is a long running
task, that keeps receiving the data from the input
source. So fault tolerance of the receiver is
important for ensuring zero data loss. Receivers
can be reliable or unreliable. reliable receivers are
the ones that can acknowledge the data it has
received. reliable receivers are used in

combination with reliable senders. Reliable
receivers ensure zero data loss and exactly once
semantics by receiving the data, replicating it and
then acknowledging it back. Once the data is
acknowledged by the receiver, the sender can
update its offsets, to point to the next data to be
retrieved.

Thus with the driver, worker and receiver fault-
tolerance capabilities, Spark Streaming
framework is highly available and it ensures 24/7
operation for stream processing applications.

RULE VII
The seventh requirement is to have the capability
to distribute processing across multiple
processors and machines to achieve incremental
scalability. Ideally, the distribution should be
automatic and transparent [3].

This requirement states that real time stream
processing systems should be capable to scale
well to any number of machines and should have
the ability to automatically load balance across
the available machines.
 In stream processing applications, controlling
the ingestion rate would not be sufficient to
handle variations in data rates over extended
periods. A viable solution for it is to allow the
cluster resources to dynamically scale as per the
processing demands.
Spark Streaming currently does not support
automatic dynamic scaling of cluster resources,
where resources are dynamically acquired and
used based on higher processing needs.

But as Spark inherently divides a large job into
smaller tasks for execution, this feature can easily
redistribute tasks to a larger cluster if more nodes
are acquired from the cluster manager. That is,
one benefit of writing applications on Spark is its
ability to scale computation by adding
(manually) more machines and running in cluster
mode. And Spark Streaming provides high level
APIs with which users can rapidly prototype
applications on smaller datasets locally, and use
the unmodified code on even very large clusters.

RULE VIII
The eighth requirement is that a stream
processing system must have a highly-optimized,

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-3,2016

37

minimal-overhead execution engine to deliver
real-time response for high-volume applications
[3].

Apache Spark is a cluster computing platform
designed to be fast and easy for use. In terms of
speed it is a great improvement over Map
Reduce. Spark has the speed advantage because
of its in memory computations, that allow data to
be persisted in memory in between computations.
This avoids the latencies involved in accessing
disks in between. Spark's in memory
computations makes it well suited for interactive
and iterative processing also where Map reduce
shows a poor performance.

The Spark ecosystem contains multiple closely
integrated components. The Fig.4. shows spark
ecosystem.

Fig. 4 Spark Ecosystem

 At its core, Spark is a “computational engine”. It
is responsible for scheduling, distributing, and
monitoring applications consisting of many
computational tasks over a cluster. Spark
provides a number of high level components
involving different work loads. The different
high level components are:

• Spark Streaming: for stream processing
for real time analytics with minimum
latency

• MLLib: for machine learning
• GraphX: for graph processing
• Spark SQL: used for structured data

processing

Thus Spark provides a unified stack wherein all
these components are designed to work together.
The unified stack provides the following
advantages:

1) all higher level libraries can take

advantage of the features, improvements
and optimizations of the lower layer
(Spark Core) very easily.

2) the costs (for deployment, maintenance,
testing, support, and others) are reduced,
as a single system is used instead for
separate software.

3) applications can be build that can
seamlessly combine different processing
models

In order to get the best performance from Spark,
major factors to be considered are:

A. Level of Parallelism

This should be configured in a way that utilizes
the available resources effectively. If there is too
little parallelism, Spark may leave resources idle.
If there is too much parallelism, the overheads
associated with managing parallelism may build
up and become significant.

B. Serialization:

When Spark has to transfer data over the
network or spill data to disk, it needs to serialize
objects into a binary format. This comes into play
during shuffle operations, where potentially large
amounts of data are transferred. By default Spark
uses Java’s built-in serializer. Spark also supports
the use of Kryo, a third-party serialization library
that improves on Java’s serialization by offering
both faster serialization times and a
 more compact binary representation. If
huge data sizes are to be handled, Kryo
serialization may be better as it can reduce the
amount of data transferred over the network. But
if more intense computations are involved in the
application a better option would be to use Java
Serialization as it may reduce processing time. To
derive its benefits, the serialization scheme that
best fits the application is to be used.

C. Memory Management
By default Spark will leave 60% of space for
RDD storage, 20% for shuffle memory, and the
remaining 20% for user programs. Some
parameters that can be used to configure the
memory usage are spark. memory.

INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-3,2016

38

fraction, spark. storage. memory etc. Finding the
best combination of these parameters would
 require to consider the
application's object sizes, shuffle frequency etc.

D. Hardware Provisioning
The hardware resources that are given to Spark
will have a significant effect on the completion
time of your application. The main parameters
that affect cluster sizing are the amount of
memory given to each executor, the number of
cores for each executor, the total number of
executors etc.

CONCLUSION
Spark Streaming has proven to be a great tool for
stream processing by providing real time
analytics with minimum latency. It achieves
better fault tolerance properties and scalability. It
also effectively handles stragglers. Due to its
unique RDD approach, it stays well ahead of the
other distributed stream processing frameworks
and is well adopted in the industry. Spark
Streaming currently fulfills most of the
requirements of real time stream processing.
Future versions of Spark will further excel on
those features and more to it.
Further studies can be conducted by comparing
the relevant features of Spark Streaming with that
of the other available distributed stream
processing frameworks to better understand their
capabilities and to choose the solution that would

best fit the requirements of the stream processing
application.
REFERENCES
[1] M. Zaharia, M. Chowdhury, T. Das, et al.
“Resilient
distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing”, Proceedings
of the 9th USENIX conference on Networked
Systems Design and Implementation. 2012, pp.
2-2.
[2] M. Zaharia, T. Das, H. Li. “Discretized
streams: an efficient and faulttolerant model for
stream processing
on large clusters”, Proceedings of the 4th
USENIX
conference on Hot Topics in Cloud Computing,
2012,pp. 10-10.
[3] M.Stonebraker, U. Çetintemel, S. Zdonik,
“The 8
Requirements of Real-Time Stream Processing”,
ACMSIGMOD Newslett., 2005, pp. 42-47. [4]
Spark Streaming Programming Guide [Online].
Available:
http://spark.apache.org/docs/latest/streaming-
programm ing guide.html [5] Documentation
[Online]. Available:
https://github.com/datastax/spark-cassandra-
connector/ blob /master/doc/0_quick_start.md

