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Abstract 
Centrality is one of the important concepts in 
dynamic social networks. One key aspect of 
social network analysis is to understand the 
central nodes in the network. Centrality is 
defined to identify the most central node in the 
network. In a graph representing a social 
network however dynamic calculation of 
centrality values for rapidly growing 
networks might be unfeasibly expensive, 
especially if it involves recalculation from 
scratch for each time period. In this paper, we 
provide an fast incremental algorithms 
comparison for closeness centrality and 
betweenness centrality computation. The 
algorithms proposed here supports efficiently 
computation of all pairs shortest paths and 
centrality values based upon changes in 
network topology, that is edge insertion and 
deletion. Our performance results provides 
substantial performance speedup on the order 
of thousands of times, including the best 
performing non-incremental centrality 
algorithms, and newly proposed centrality 
update algorithms. 
Keywords-Closeness centrality, betweenness 
centrality, incremental algorithms, dynamic 
networks, all-pairs shortest paths, update 
algorithm. 

I. INTRODUCTION 
In social network analysis, indicators of 
centrality identify the most important nodes 
within a network. For decades, it has been an 
important and active research field for solving a 
number of problems like revealing patterns of 
information dissemination, identifying the 
individuals who are best placed to influence or 

influential actors, assessing the impact of 
business decisions in organisational structures, 
and even for finding the best store locations in 
cities etc. We proposed incremental algorithms 
for evaluating quickly the effects of topology 
modification on centrality values. 
        The closeness centrality of a node x is 
defined as length of their shortest paths. The far 
ness of node x is defined as the sum of its 
distances from all other nodes, and its closeness 
was defined by Bavelas as reciprocal of the 
farness .Closeness centrality algorithm that 
handles various types of network updates 
including addition, removal and modification of 
nodes and edges. The betweenness centrality of 
node x is defined by Freeman as the fraction of 
the shortest paths that pass through x across all 
pairs of nodes in a network. 

        The traditional techniques used for 
computing both the centralities of all vertices can 
be calculated by solving all pairs shortest-path 
problems, which can be solved by various 
algorithms taking  time, 
where V is the number of vertices and E is the 
number of edges of a graph.  

To provide solutions to costly problems on 
continually changing networks, incremental 
algorithms have been most commonly used.  An 
incremental algorithm is an algorithm that 
updates the solutions to a problem after an 
incremental change is made on its input. 

         The initial design point for all of these 
centrality metrics, including closeness and 
betweenness was static snapshots of small 
networks and the limiting algorithmic 
complexities and computation times of centrality 
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measures was not a significant problem for such 
small, static networks and to quantify the effects 
of topology modification and to find exact 
centrality scores existing algorithms are not 
efficient enough to be used in practise. So, 
incremental algorithms are designed to evaluate 
the effects of topology modification. The main 
contribution of this  paper are incremental 
algorithms which efficiently update the 
closeness and betweenness centralities upon 
edge insertion and deletion. Incremental 
algorithms are used to reduce the cost of 
computation and they arrive at solution for 
computationally complex problems in an 
efficient manner. The main desire to select 
closeness and betweeness centrality is, these are  
one of the most commonly used metrics in social 
network analysis and both the centralities 
depends entirely on the shortest path information 
across all pairs of nodes .Therefore this paper 
compares the betweenness and closeness 
centralities as the example incremental metrics. 
Nowadays, many real life networks that can 
obtained online evolve only by growing network 
updates. Handling growing network updates is 
important and can be handled by a single 
incremental algorithm. 

II. COMPUTATION OF CLOSENESS 
AND BETWEENESS CENTRALITY 

A.NOTATION 
A directed network G consists of a set of nodes 
V(G) and edges E(G) where n is the number of 
nodes, and m is the number of edges in the 
network. x → y ∈ E(G) represents an edge 
directed from node x to node y, where x ∈V(G) 
is a predecessor of y, and y ∈V(G) is a successor 
of x. Pred(x)is used to denote all predecessors of 
x in the network. Pred(y) denotes the set of 
predecessors of node y on the shortest paths from 
node x. G is the transpose of network G where 
all edges in network G are reversed in direction. 
The set of edges, nodes, and edge costs are also 
defined for network G. In weighted networks, 
each edge e in the network has a traversal cost of 
C(e) where C (x→y) > 0 for x → y ∈ E(G). The 
length of a path  is the sum of the costs of the 
edges on Path. The distance from node x to y is 
the length of the minimum-length path from x to 
y that is also called the shortest path. D(x, y) 
denotes the shortest distance while σ(x, y) 
denotes the number of shortest paths from node 
x to y.  

          Closeness centrality is traditionally best 
computed by running a single-source shortest 
path algorithm using each node as the source 
node once. At each iteration, the distances found 
are summed up to obtain the total distance from 
the given source node, and this distance is 
inverted to obtain the closeness value of the 
source and betweenness centrality denotes 
fraction of shortest paths that pass through node 
across all pairs of nodes. In un weighted 
networks, a breadth-first search algorithm may 
be used to discover the shortest paths from a 
source nodes, which is bounded by O(n+m) time 
complexity per source node, resulting in O(nm) 
complexity in total. In weighted networks, 
Dijisktra’s algorithm has O((n +m)logn) 
complexity, where n denotes the number of 
nodes, m denotes the number of edges in the 
network. This complexity is achieved when a 
binary min-heap is used in the implementation of 
the priority queue. A faster run-time of O(m + 
nlogn) can be achieved by implementing the 
priority queue using a Fibonacci heap. When 
Dijisktra’s algorithm is invoked using every 
node in the network as the source node to 
compute all-pairs shortest paths, the overall 
complexity is O(mn + n2logn). Computation of 
both the centralities can be performed by running 
an all-pair shortest paths algorithm (e.g.Floyd-
Warshall ), which results in O(n3) time 
complexity.The algorithmic complexities of 
Dijkstra and Floyd-Warshall are sufficiently 
high that they are very difficult to invoke at every 
time step in dynamically changing, large-scale 
networks. Hence, this paper proposes the use of 
incremental algorithms that avoid the cost of re 
computing all of the shortest paths from scratch 
every time period. The algorithms presented here 
are designed to handle weighted, directional, 
dynamic networks with no negative edge costs or 
weights. 
B.OVERVIEW OF CLOSENESS AND 
BETWEENESS CENTRALITY 
The closeness centrality of node x, H(x),is 
defined as the inverse of the sum of the distances 
from node x and all other nodes in the network:  

 
Where d(y, x)  denotes the shortest distance 
from node x to node y. 
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Fig 1: Example Network  for  Calculating 
closeness Centrality. For the above fig.1 the 
most central node is 4 based on values obtained 
by using the above formulae. 
 
Betweenness centrality of a node s is defined as 
the fraction of shortest paths that pass through 
node t across all pairs of nodes. Let  be 
the number of shortest paths from s to t and  
be the number of shortest paths from s to t that 
contain node s.       
 

 

   
For the fig.2 the betweenness centrality foe 
node 4 is 15, it can be calculated by using the 
above formulae. 
 
C. ALGORITHM   VARIANTS FOR 
COMPUTING BOTH THE 
CENTRALITIES. 
Many researchers have provided algorithms for 
variants of closeness and betweenness 
centralities. Centrality is a commonly used social 
centrality metric and it can have different uses in 
different contexts. Closeness centrality of a 
social actor describes actor’s efficiency for 
information propagation across the entire 
network. In other words, social actors with high 
centrality values are considered to be efficient at 
making contact with others in the network. High 
centrality is also regarded as representing high 
potential for independent communication. 

In the context of technological networks, such as 
wireless networks, closeness centrality identifies 
nodes that have rapid access to information (e.g. 
nodes that are close to many other nodes on 
average). Since closeness centrality is inversely 
proportional to the sum of the distances to all 
other nodes, it also provides an estimate of how 
long it will take information to spread from a 
node to all others. Hence, it can also be used as a 
performance measure in technological networks. 
As another example, the authors discuss the use 
of closeness centrality for policy-making 
networks (e.g. drug policy making). In the 
context of policy-making networks, the actors 
that have information that is crucial to all other 
actors in the network should have high closeness 
centrality if the network is to function 
effectively. As we mentioned earlier, closeness 
centrality is one of the most commonly used 
metrics in social network analysis. Variants for 
betweenness centrality focus on incorporating 
over-time information and we focus here more 
on faster computation of the original 
betweenness metric in dynamically growing 
networks. 
 
D.WORK ON DYNAMIC SHORTEST 
PATH COMPUTATIONS 
We also draw on earlier research on dynamic 
shortest path computations. Computation of both 
the centralities are tightly coupled with solving 
the all-pairs shortest paths problem. In the 
literature, there are many different techniques 
proposed for solving the all-pairs shortest paths 
problem dynamically. However, some of these 
techniques come with a number of restrictions. 
For instance, solves the all-pairs shortest paths 
problem in networks that have positive integer 
edge costs that are less than a certain number, b, 
which is inapplicable for networks whose edges 
are positive real valued numbers. The 
Demetrescu and Italiano algorithm depends on 
the notions of locally shortest paths and locally 
historical paths. The main idea is to maintain 
dynamically the set of locally historical paths, 
which is a path that has been identified as a 
shortest path at some point and has not been 
modified since then. In this study, we use the 
dynamic all-pairs shortest path algorithm 
proposed by Ramalingam and Reps in as our 
building block to maintain all-pairs shortest 
paths dynamically[. There are many reasons why 
we use Ramalingam and Reps algorithm as our 
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basic building block. First, Ramalingam and 
Reps algorithm is the most commonly used 
dynamic all-pairs shortest paths algorithm in the 
literature. Second, it has good performance 
compared to other dynamic all-pair shortest path 
algorithms available in the literature considering 
the experiments presented. Ramalingam and 
Reps algorithm performs quite well on sparse, 
real-life networks and the compute times of 
Ramalingam and Reps algorithm and 
Demetrescu and Italiano’s algorithm are very 
close. In experiments done with real life 
networks, Ramalingam and Reps have the lowest 
or one of the lowest compute times among all 
dynamic all-pairs shortest paths algorithms. 
Third, Ramalingam and Reps algorithm is shown 
to scale better as the number of nodes increases 
because Demetrescu & Italiano’s algorithm 
maintains more global structures and requires 
more memory while Ramalingam and Reps 
algorithm requires less space and exhibits better 
locality in its memory access pattern. Since 
supporting an increasing number of nodes is 
important for dynamically growing social 
networks, we decided to use Ramalingam and 
Reps algorithm as a building block in our 
algorithm.  
 
III. INCREMENTAL CLOSENESS AND 

BETWEENESS ALGORITHMS. 
An incremental algorithm updates the solution to 
a problem after an incremental change is made 
on its input. In the application of an incremental 
algorithm, the initial run is conducted by an 
algorithm that performs the desired computation 
from scratch and the incremental algorithm is 
used in the subsequent runs (i) using information 
from earlier computations and (ii) to reflect the 
update on the network while avoiding re-
computations as much as possible.To compute 
the closeness values incrementally for streaming, 
dynamically changing social networks, the 
incremental all-pairs shortest-paths algorithm 
proposed by Ramalingam and Reps is extended 
such that closeness values are incrementally 
updated in line with the changing shortest path 
distances in the network. 
        The proposed algorithms depend on the 
dynamic all-pairs shortest path algorithms 
proposed  to incorporate the computation of both 
the centralities. Incremental algorithms usually 
provide faster solutions at the cost of more 
memory usage. The incremental centrality 

algorithms also takes quadratic space, using 
memory on the order of O(n2 + m).  
 

IV.    DATASETS AND RESULTS 

The goal of this paper is to draw attention to the 
use of incremental algorithm design in social 
network analysis methods. In particular, in this 
paper, we explore how much speedup we obtain 
due to the use of an incremental algorithm on 
different types of synthetic and real life networks 
that are used by social network researchers. 
Hence, our performance evaluations primarily 
show how much performance improvement can 
be achieved over the most commonly used way 
of computing the all-pairs shortest paths in a 
network as well as closeness and betweenness 
centralities as a by-product of it. Here we mainly 
comparing the two centrality measures based 
upon various parameters and results obtained. 
 

A.SYNTHETIC NETWORKS 

To know the  various performance results of the 
proposed incremental algorithms, we have 
designed experiments with networks that are 
generated using different graph generation 
algorithms and network sizes. To understand the 
impact of topology, we use synthetic networks 
using three different topologies, while keeping 
the number of nodes and the average degree 
fixed. In our experiments, we use three different 
topologies: preferential attachment 
networks(PF), Erdos-Renyi networks(ER) , and 
small-world networks(SW) . We use networks 
with 1000, 3000,and 5000 nodes  with a step size 
of 2000 and set the average degree to 6. The 
average degree of a network is a measure that 
compares the number of edges against the 
number of nodes in the network. It is computed 
as 2.|E(G)| / |N(G)| as each edge contributes to 
the degree of both nodes it is connecting. The 
rewiring probability for small world networks is 
set to 0.5.To measure the performance of the 
algorithms incremental closeness and 
betweenness algorithm for growing network 
updates, we build  the synthetic networks 
described above with 100 edges that are selected 
randomly. We insert incrementally the last 100 
edges and get the average update performance in 
terms of execution time. For instance, if it takes 
5 seconds to complete a set of updates using 
incremental algorithms and 30seconds to 
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complete the same set using various proposed 
algorithms, then we conclude that incremental 
algorithm as 6x times faster .For closeness 
centrality we are using dijisktra’s algorithm and 
for betweeness algorithm we are using Brande’s 
algorithm as proposed algorithm. For synthetic 
networks, we use preferential attachment 
networks (PF), Erdos-Renyi networks(ER), and 
small-world (SW) networks. We vary the 
number of nodes from 1000 to 5000 with a step 
size of 2000, and fix the average degree to 6. For 
small world networks, the rewiring probability is 
0.5. We generate these synthetic networks with 
all but 100 edges that are selected randomly. We 
insert the last 100 edges incrementally and get 
the average update performance in terms of 
execution time over the repeated invocations of 
Brandes’ and dijisktra’s algorithm, which are the 
best performing algorithm used in standard 
implementations. The performance benefits of 
the incremental betweenness and closeness 
algorithm increase with the increasing network 
size.  
      As shown in table 3, diameter and average 
path length of the network are inversely related 
with the performance obtained. For instance, in 
networks generated using a preferential 
attachment generation model, characteristic path 
length and diameter are lower compared to other 
topologies. When the paths are short in a 
network, an update on the shortest paths cannot 
propagate very far, resulting in quick return from 
the update and a very limited number of affected 
nodes (e.g. less than 5% in the case of 
preferential attachment networks).The results 
obtained for the centralities are almost nearer so 
both centrality measures, performance results 
obtained are nearly equal in value for synthetic 
networks as shown in below tables. 
 

 

 

 

 

  TABLE 3-NETWORK STATISTICS. 

 

 

B.REAL LIFE NETWORKS 
Here, we evaluate the performance of the 
algorithms that we are used , using a number of 
real life networks that are of different 
magnitudes and consists of various parameters 
and that grow drastically in incremental order 
over time. The weighted networks are considered 
for evaluation, where the cost of an edge is 
inversely proportional to the strength of 
relationship. We consolidate multiple updates 
for the same pair of nodes in a single edge. For 
instance, if an interaction between two nodes x 
and y has been recorded twice up to a certain 
point, then the edge x → y has the cost of 1/2. 
When a third update is recorded between x and y, 
then the cost of the edge x → y is updated to be 
1/3. We first describe the datasets we have used, 
and then compare the performance of our 
incremental betweenness and closeness update 
algorithm against the best performing non-
incremental betweenness and closeness 
algorithms (Brandes’algorithm  and Dijisktra’s 
algorithm). We use four different real life 
networks: Socio Patterns , Facebook-like 
(online-forum communication between students) 
, HEP Co-Authorship Network (co-authorship 
relations between High-Energy Physics 
researchers), and P2P Communication Network 
(P2P file sharing) . 
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Next, we report our performance results and 
explain them in line with the topological features 
of the networks described above. For the real life 
network, in order to perform with the growing 
network updates, we start with an earlier version 
of the network that has all the information expect 
the last 100 updates. Table 4 presents the 
performance improvements obtained along with 
basic information on the networks. The avg. 
speedup column in Table 4 describes the speedup 
obtained over Brandes’ and  Dijisktra’s 
algorithms averaged across 100 updates on the 
network. For instance, for a single update the 
incremental value for both the algorithms is 9.58 
times faster on average than invoking both the 
algorithms for the same update. The performance 
benefits improve with the increasing network 
size and decreasing characteristic path length, 
diameter, and average betweenness. For 
instance, on the HEP co-authorship network, 
there are several close-knit groups and it is a 
relatively more connected network than the P2P 
communication network, where only a few users 
act as servers for the other users providing them 
with files to download. Hence, in the P2P 
communication network, very few nodes can lie 
on the shortest paths between other nodes. 
Consequently, when a network update occurs, 
few shortest paths tend to be changed,and thus 
few centrality values are affected, resulting in a 
dramatic average speedup per each update over 
both Brandes’s and Dijisktra’s algorithms. 

TABLE 4- TOPOLOGICAL FEATURES OF 
REAL LIFE NETWORKS, 

CORRESPONDING      PERFORMANCE 
RESULTS. 

 

IV. CONCLUSION 
This paper proposes an  comparison of 
incremental algorithms for both betweenness and 
closeness centrality measures in dynamic social 
networks. The main goal is to avoid re-

computations involved and reflect the changes 
triggered by network update as efficiently as 
possible .The performance results obtained here 
indicate substantial performance improvements 
over the state of including non-incremental and 
dynamic update algorithms on realistic network 
data. Hence incremental algorithms offers larger 
potential to allow dynamic social networks to be 
applied to real time data and too much larger 
datasets that would have been possible using 
traditional centrality metric computation. 
Therefore in conclusion the incremental 
algorithms are applied  and compared with the 
other centrality measures for updating the 
dynamically  growing networks and to obtain the 
desired results. 
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