
 

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-6,2015 
55 

 
Abstract— In  recent year  node  localization 
is one of the most important issue since it 
plays a critical role in many situation. The aim 
of the sensor network localization problem is 
to determine positions of all sensor nodes in a 
network given certain pair wise noisy distance 
measurements and some anchor  node 
positions using distributed localization 
algorithm based on second-order cone 
programming relaxation. The distributed 
sensor network localization algorithm using 
SOCP Relaxation is implemented and 
Simulation for uniform network topologies 
shows, the anchor position and distance 
estimation errors, and the performance gains 
achievable in terms of localization accuracy 
and computational efficiency. 
Index Terms— Distributed algorithms, 
convex optimization, relaxation methods , 
Localization  
 

I. INTRODUCTION 
The development of MEMS, chip systems and 
wireless 
communications technology has fostered, low-
powered and multi-function sensor nodes, which 
can integrate information collection, data 
processing, wireless communications and other 
functions together within the small storage, to 
gain rapid progress [1]. WSN is a multi-hop self-
organizing network, where a large number of 
sensor nodes are deployed. The aim of WSN is 
to perceive, collect and process the information 
of sensor nodes within the coverage of the 
network [1]. 

 
 

 
In wireless sensor networks (WSN’s), 
localization is often performed by using the 
information of time-of-arrival (TOA), time-
difference of-arrival (TDOA), received-signal-
strength (RSS) measurements, or a combination 
of them [2]. However, localization by using TOA 
or TDOA information (including the Global 
Positioning System (GPS)) requires the 
complicated timing and synchronization, which 
makes sensor node localization cost-expensive 
and is not suitable for sensor networks with 
small, simple and cheap nodes [9]. In indoor 
environments, the signal from the GPS satellites 
is too weak to penetrate most buildings, making 
GPS useless for indoor localization [4]. We here 
consider the problem by using the RSS 
information without the need of timing and 
synchronization. 
Currently, most node localization schemes for 
WSNs are relying on a small fraction of beacons 
scattered throughout the sensor network.. 
Beacons are sensor nodes which know their own 
positions (through GPS or other manual 
configurations) and serve as a reference for other 
nodes whose positions are unknown as they are 
deployed. The position discovery for the 
unknown nodes in these cases intends to exploit 
the multi hop character of WSNs, and rely more 
on the node-to-beacon distance measurements. 
Moreover, due to some special limitations on the 
sensor nodes, such as low memory and 
bandwidth, short battery life, and limited 
communication and computation capability, a 
node localization scheme is commonly required 
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distributed, robust and energy efficient, and so 
on [5]. 
 In this paper, we present a distributed algorithm 
based 
on second-order cone programming (SOCP) for 
solving the sensor network localization problem. 
In the presence of distance estimation errors each 
sensor node determines its position by executing 
the localization algorithm independently using 
distance information to the anchor and sensor 
nodes with which it is directly linked (i.e., which 
are within its communication range). If in 
addition to the distance estimation errors, the 
anchor positions also have errors then the 
algorithm consists of three steps: using the local 
distance information and inaccurate anchor 
positions each sensor node estimates its position. 
Then, the anchors execute the localization 
algorithm using position information from their 
neighbouring nodes and  the associated distance 
information to refine their positions. Finally, the 
sensor nodes execute the localization algorithm 
to refine their position estimates [9]. 
One of the significant advantages of our 
approach is that it is fully distributed and 
converges to an optimal (or near-optimal) 
solution. As a result of the distributed nature of 
the solution, the problem dimension at each node 
is a linear function of only the number of 
neighbours of the node. There is no significant 
increase in the computational effort per node 
even in large networks (for a given node 
connectivity level), whereas most existing 
methods result in an exponential increase in the 
computation time with network size gets 
reduced. Thus, the distributed SOCP approach is 
suitable for large-scale networks with thousands 
of nodes. 
The rest of the paper is organized as follows. 
Section II provides an overview of existing 
approaches. Section III presents the 
mathematical formulation and the SOCP 
relaxation of the localization problem. In section 
IV we present the distributed localization 
algorithm based on the SOCP relaxation. The 
simulation study appears as sections V. 
 

II. RELATED WORK 
A more generalized form of the localization 
problem is the distance geometry problem. It has 
been studied extensively, mostly in the frame-
work of Euclidean distance matrix (EDM) 
completion. Schoenberg and Young and 
Householder [5] established some basic 

properties of distance matrices. Ideas presented 
therein form the basis of a class of algorithms 
known as Multidimensional Scaling. Algorithms 
based on MDS sometimes use objective 
functions (such as the STRESS criterion) that 
ensure low-dimensional solutions for the given 
incomplete distance matrix.[22] The problem 
with these techniques is that there is possibility 
of getting stuck in local minima due to non-
convex nature of the problem, and there is no 
gurantee of finding a desired realization in 
polynomial time. apply distributed weighted 
MDS (dwMDS) to the localization problem and 
formulate the problem using a general form of 
the cost function we use in this paper. They solve 
the minimization problem using majorizing 
functions. Biswas and Ye [22] solve the problem 
using the semidefinite programming (SDP) 
relaxation. This approach can solve small 
problems effectively. The authors report a few 
seconds of PC execution time for a 50 node 
network. They have also proposed two 
techniques to improve the accuracy of the SDP 
solution. The first technique adds a 
regularization term to the objective function to 
force the SDP solution to lie close to a low 
dimensional subspace of Rd and the second 
technique improves the SDP estimated solution 
using a gradient-descent method. [23] 
A few variations of the original problem include 
localization in NLOS sensor networks, with 
mobile sensors, etc.  Sensor Localization forms a 
sub-problem of the larger set of Graph 
Realization Problems. Other problems including, 
but not limited to molecule structure prediction, 
data visualization, internet tomography and map 
reconstruction. The concept can also be extended 
to problems of dimensionality reduction. 
Examples include face recognition and image 
segmentation. 
A. Computational Complexity of Sensor 
Localization 
The problem with MDS based algorithms is that 
there is a possibility of getting stuck in local 
minima due to the nonconvex nature of the 
problem, and there is no guarantee of finding a 
desired realization in polynomial time. With this 
in mind, researchers have also attempted to pin 
down the exact computational complexity of this 
problem. Saxe  proved that the EDM problem is 
NP-hard in general. See also [2]. Aspnes et al.[3]  
proved a similar result in the context of sensor 
localization. More and Wu, who used global 
optimization technique s for distance geometry 
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problems in the molecule conformation space, 
established that finding an optimal solution, 
when is small, is also NP-hard. Other general 
global optimization approaches which employ 
techniques like pattern search  face similar 
problems.  
Localization as such is a non-convex 
optimization problem with multiple local 
minima. It was formulated as a feasibility 
problem with convex radial constraints by 
Dohery et. al. [3]. However, it required 
centralized computation which made it 
unsuitable for large-scale networks. A 
distributed localization method MDS MAP(P,R) 
was proposed by Shang based on multi-
dimentional scaling (MDS) [2]. However, it 
involved lots of redundant calculation while 
merging local data for sensors to get global data 
for the entire network.  
The SDP relaxation problem proposed by Biswas 
and Ye [24] adds a regularization term in the 
objective function to reduce the rank of the SDP 
solution, thereby reducing the estimation error. 
Refining of the initial estimates is also done, 
using a gradient-descent method.  
Computational efficiency becomes increasingly 
important in case of mobile sensor networks, 
requiring dynamic estimation of sensor 
positions. 
 
III.SENSOR NETWORK LOCALIZATION: 
PROBLEM FORMULATION 
Sensor nodes measure physical quantities at a 
given position. In most applications, the data 
reported by the sensors is relevant only if tagged 
with accurate position of the nodes. But 
equipping each node with a GPS is a costly 
affair. Also, it has geographical constraints (for 
instance, it doesn’t work indoors). Hence, the 
sensor network localization problem is of 
extreme importance.  
It can be formulated as follows:  
“Assuming knowledge of the positions of some 
nodes and some pairwise distance 
measurements, determine the position of all 
nodes in the network. Nodes whose positions are 
known beforehand are called reference nodes 
(RN) or anchors, and nodes whose positions are 
unknown as the un-localized nodes (UN) or 
sensors. The localization problem can be broken 
down into two sub problems:  
(i) Ranging: To determine the distance (or range) 
between two neighboring nodes, for select nodes, 
depending on the model used. Usually, the 

constraints are noise in measurement and non-
practicality of large distances between nodes, 
hence distances only less than a specified 
“RadioRange” are considered.  
(ii) Positioning: To determine the position or 
location of the nodes given some pairwise 
distances. 
Mathematically speaking, there are distinct 
points in Rd (d ≥ 1). We know the Cartesian 
coordinates of the last n−m points (“anchors”) 
xm+1,...,xn and the Euclidean distance dij >0 
between “neighboring” points i and j for (i, j) ∈A, 
where A ⊆ ({1,...,n} ×{1,...,m})∪({1,...,m}×{1,..., 
n}) . We wish to estimate the Cartesian 
coordinates of the first m points (“sensors”).” 
Here, we present a systematic approach towards 
sensor localization taking into account the 
statistical modeling of the ultra-wideband 
physical layer channel. This is accomplished 
through a distributed approach to refine sensor 
position estimates. Because most sensor 
localization approaches in the literature do not 
take into account the errors in node positions. 
But here, we have assumed erroneous node 
positions (both for sensors and anchors) and the 
localization is done in a three step process.  
(1)  Sensor positions are estimated using 
information from their neighbors.  
(2) Anchor positions are refined using relative 
distance information exchanged with their 
neighbors.  
(3) Sensor positions are re-estimated using 
refined anchor positions of their neighbors.  
 
Such a distributed approach goes a long way in 
discarding the effects of inaccurate node 
positions.  
Simulations have performed on uniform and 
irregular network topologies, and dependency of 
localization accuracy and computational 
efficiency with various factors has been studied. 
 
A. Convex Optimization using Matlab 
MATLAB  takes the help of certain “solvers” 
for solving convex optimization problems; 
common ones include CVX, SEDUMI, CPLEX, 
GUROBI etc. Different solvers are 
recommended for different optimization 
problems. E.g. SEDUMI, SDPT3, CSDP, 
SDPA work best for Semidefinite Programming 
(SDP), while GUROBI and MOSEK are good 
for integer linear programming (LP). Now, 
which solver to choose depends on both the 
problem size and the type of the problem.[26] 
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The variations in the type of problem can 
include constraints, which can be one the 5 
types:  
� None(unconstrained)  
� Bound  
� Linear (including bound)  
� General (smooth)  
� Discrete (integer)  
As well as the type of optimization problem to 
be solved, which can be of one of the following 
types:  
� Linear  
� Quadratic  
� Sum-of-squares (Least Squares)  
� Smooth Nonlinear  
� Non-smooth  
 
IV. DISTRIBUTED SOCP 
LOCALIZATION ALGORITHM 

1) SOCP Relaxation  
SOCP has been chosen due to its simpler 
structure and computational efficiency. The 
SOCP relaxation was first studied by Tseng. 
Although it is weaker than SDP , its 
computational superiority enables the use of 
localization in mobile sensor networks.  
In general, a second-order cone program (SOCP) 
is defined as:  
minimize Tf x  
subject to 

2
,T

i i i iA x b c x d      i=1,...,m 

,Fx g  

where nx R  is the optimization variable, 

,in n
iA R  and  ,p nF R   

Now, the problem can be formulated as  
2

2

1,...,
min iji j
x xm

dx x  
  (1)

 

where ІІ · ІІ denotes the Euclidean norm.  
This can be rewritten in a convex form (by 
relaxing equality constraint to “greater than or 
equal to” inequality) as:  

2
2

1,..., ( , )

. . , ( , )min ij ij ij i j
x xm i j A

y d st y forall i j Ax x


   
(2)

 

The SOCP has (d+3)|A|+ m*d variables and 
(d+2)|A| equality constraints. In sensor network 
localization, |A| = Ω(m) and d = 2, so that(7) has 
Ω( m) variables and Ω(m) equality constraints.  
 
Distributed Algorithm: 

In a distributed algorithm, the optimal result is 
obtained in stages. Timing of computations at 
any one processor/node during a stage can be 
independent of the timing of computations at 
nodes in the same stage. All interactions and 
exchange of information / refining of positions 
takes place at the end of a particular stage. Here, 
in the SOCP it has been found in  paper that each 
sensor can independently solve the minimization 
problem using position information only from its 
neighbor nodes. 
Let NBA (i) denote the set of neighbor nodes for 
node xi of the network. Above SOCP can be 
solved independently over the m sensor nodes, 
where each node uses information (xj, dij) from 
its neighboring nodes xj, j ɛ NBA (i). Thus, the 
SOCP decomposes to the following distributed 
formulation: 

, ,
min

i ij ijx y t

 
( )Aj NB i

  ijt
   (3)

 

s.t. 
2
,ij i jy x x               for all  ,i j A  

       2
ij ij ijt y d   

 
The distributed SOCP algorithm consists of a 
phase where each sensor node estimates its 
position using local information and solving the 
SOCP (3). In an iterative distributed scheme, this 
would be followed by a communication phase 
wherein each node exchanges its position 
estimate with its neighbors. These iterations are 
repeated after fixed intervals of time or when any 
new information becomes available at a node. It 
should be noted that the algorithm uses 
information from neighboring anchors as well as 
sensors to position a given node. Thus to obtain 
a non-trivial position estimate each node needs at 
least3neighbors (for2-D localization) with 
position estimates, as opposed to the more 
stringent requirement of having3anchors in the 
neighborhood that many 
triangulation/trilateration schemes impose. If the 
anchor positions are inaccurate, the distributed 
SOCP approach will consist of three steps: after 
the sensor nodes estimate their positions based 
on the inaccurate anchor positions and distance 
information, the anchors solve the local SOCP 
using position information from their 
neighboring nodes and the associated distance 
information to refine their positions. As we will 
show, this second step results in a significant 
improvement in the positioning accuracy of the 
inner anchors. Finally, another iteration of the 
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local SOCP  over the sensor nodes further refines 
their position estimates. 
Let ni(=|NA(i)|)represent the number of 
neighbors of the node xi. SOCP has 
2ni+3variables,2ni conic constraints and 1 
equality constraint. In sensor networks, due to 
the short radio range of the sensors, the number 
of neighbors of a given node is a small fraction 
of the total number of nodes in the network (i.e., 
ni<< n). Thus, the distributed SOCP approach 
results in significantly smaller problem sizes 
than approaches proposed in the literature. The 
SOCP problem can be efficiently solved by 
interior point methods. Here we use SeDuMi  to 
solve this problem.  
 
V. Algorithm and Simulation results 
1. Distance Measurement Algorithm: 
In this algorithm using anchor node and pair wise 
distance is measured. Position computation 
algorithm using this distance find the node 
position. finally find the error between true node 
position and estimated node position. 
 

 
 
2. Position Computation and Localization 
Algorithm: 

 

B. Simulation Results : 

Simulation is performed in matlab. In this 
experiment using uniform distribution is used for 
node deployment. As shown in figure.1. number 
of nodes is 300, number of node is 0.15 
percentage, RadioRange 0.06 and noise factor 
nfd is 0.05. In figure 1 sensor node shown by      
anchor node shown by       and estimated position 
of node is denoted by +. Line shows the true node 
position and estimated position difference. 

fig.1. Distributed SOCP results for Uniform 
topology: n = 300, Radio Range = 0.6, p = 0.15 

and nfd = 0.05 
 

Te
st 
ca
se 

n 
Radio
Range

p 

CPU 
time 
per 

node 
(in sec) 

Erro
r 

1 
50
0 

0.10 0.15 0.2188 
0.07
91 

2 
50
0 

0.12 0.15 0.2500 
0.12
92 

3 
50
0 

0.14 0.15 0.2836 
0.02
56 

4 
50
0 

0.16 0.15 0.3438 
0.03
45 

Generate random true node positions, using n samples 
from a uniform distribution 

Calculate true distances. 
Set of all neighbour pairs (i,j) which are within radio 

range of each other. Calculate cardinality of set 

Consider n distinct nodes. 
First m nodes are sensor nodes or un-localized  node and 

the rest are anchor  node. Select the radio range. 

Noise added in distance. 

Noisy measured or estimated distance between neighbours 

Initialize the node and anchor position. 
Consider maximum iteration and absolute 

tolerance.  

Find the neighbours of sensor node. 
Find the coordinates of sensor node. 

Calculate number of neighbours of sensor 
node. 

Optimization is performed using second order 
cone programming (SOCP) 

Update node position based on the calculation 
Used Stopping criteria. Estimated sensor 

position and find the MSE. 
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5 
50
0 

0.18 0.15 0.2344 
0.04
04 

6 
50
0 

0.20 0.15 0.3906 
0.03
92 

7 
50
0 

0.22 0.15 0.4688 
0.03
91 

8 
50
0 

0.24 0.15 0.4844 
0.03
33 

9 
50
0 

0.26 0.15 0.4688 
0.04
27 

 
Table 1 . Differenet RadioRange for 

n=500,p=0.15 

 
fig.1. Distributed SOCP results for Uniform 

topology: n = 300, Radio Range = 0.6, p = 0.15 
and nfd = 0.05 

 

Fig.2.Average positioning error as a function of 
different RadioRange. (n = 500,p= 0.15 and 

nfd= 0.05) 
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0.04
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2 
100
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0.1
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0.10 0.2656 
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98 

3 
100
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0.1
5 

0.0
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0.15 0.3438 
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81 

4 
100
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0.1
5 
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5 

0.20 0.6719 
0.02
68 

5 
100
0 

0.1
5 

0.0
5 

0.25 0.8125 
0.02
94 

Table.2 Differenet RadioRange for 
n=500,p=0.15 

Fig.3.Average positioning error as a function of 
different RadioRange. (n = 1000,p= 0.15 and 

nfd= 0.05) 
COMPARISON 
Plot the graph noise factor and average node 
localization  as shown in fig.4. Noise factor is 
increased average node localization accuracy is 
decrease. This graph shows that changes in 
distributed SOCP algorithm in k and pars. 
structure gives less error as compare to SOCP 
algorithm. Table shows parameter of the 
distributed SOCP algorithm. The performance 
increases is shown in graph and table.  
As shwn in table implemented SOCP can give 
compare to paer (9). Taken 500 node , 
RadioRange 0.15, anchor percentage 0.15, noise 
factor for sensor node is difeerent different  and  
noise factor for anchor node is taken 0.10 and 
simulate. 
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4 
50
0 

0.15 
0.1
5 

0.1
0 

0.1
5 

0.04
83 

0.05
35 

5 
50
0 

0.15 
0.1
5 

0.1
0 

0.2
0 

0.05
22 

0.05
90 

Table 5.3 Different noise factor for sensor node 
nfa and its parameter for n=500, 

RadioRange=0.15,p=0.15 and anchor node 
position nfa=0.10 

 
Fig. 4. Average positioning error as a function 
of the Noise Factor nfd. (n = 500, Radio Range 

= 0.15, p = 0.15) 

CONCLUSIONS 
Distributed approach goes a long way in 
discarding the effects of inaccurate node 
positions. Simulations have performed on 
uniform topology, and dependency of 
localization accuracy and computational 
efficiency with various factors has been done. 
Average node localization accuracy is improved 
as compared to the Distributed SOCP 
localization accuracy. In SeDuMi solver a 
Different parameter of second order cone 
constraints are used and get accurate result. 
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