

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-5,2015

7

SECURE P2P VOICE OVER IP USING DEEP PACKET
INSPECTION

1Satish N. Gujar, 2Dr. V.M.Thakare
1Information Technology Department,Shri Jagdish Prasad Jhabarmal Tibrewala University, Rajasthan

2Computer Science Department, Sant. Gadgebaba Amravati University, Amravati
Email: 1satish_gujar@yahoo.com , 2vmthakare@yahoo.com

Abstract—Skype is a Peer-to-Peer (P2P) Voice
over IP (VOIP) chat program. It provides its
clients with an inexpensive means to
communicate worldwide via the internet
through wired and wireless networks. In the
past this application was limited strictly to
computers, yet with continuous advancements
in mobile communication, Skype phones and
other mobile devices have recently hit the
market in an attempt to capitalize on Skype’s
reliable connection algorithms. However,
despite the success of this application, it is
important to note that due to Skype’s
connection algorithm and the nature of P2P, a
number of vulnerabilities emerge that
threaten both users and their networks. This
paper outlines how to block the Skype
application through the use of Deep Packet
Inspection. This novel approach is completely
scalable to networks of any size as a means of
blocking one of the largest threats to
commercial and government networks today.

I. INTRODUCTION
Skype is an international enterprise with more
than 100 million users worldwide [1]. It is
available in 28 languages and can connect people
in almost every country in the world. It provides
chat services as well as video conferencing, and
computer-to-telephone communication. It is
extremely inexpensive with free domestic and

computer-to-computer calls while international
calls average $.02 per minute. However, its most
notable feature is its ability to form connections
on any network with internet access. These
features have enabled Skype to build and
maintain its large and growing user base.
However, due to the P2P nature of this
application, a number of vulnerabilities quickly
present themselves. Although users may choose
to disregard these vulnerabilities when they use
Skype on their personal computers, corporations
and government entities are not so quick to accept
the same risks. The basis of this decision can be
understood when reviewing the Skype User
Agreement that must be accepted before one can
install the application. One small portion of the
agreement reads: “You hereby grant permission
for the Skype Software to utilize the processor
and bandwidth of your computer for the limited
purpose of facilitating the communication
between Skype Software users.” (excerpt from
4.1). In this agreement, users essentially agree to
give complete control of their computer and their
network to facilitate the needs of Skype.
Moreover, due to the nature of its connection,
Skype is also prone to a number of common P2P
vulnerabilities. These can range from buffer
overflow attacks, to denial of service, to
diminished network bandwidth. For large
corporations and government entities, these types
of attacks hinder productivity and efficiency.

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-5,2015

8

However, despite all of these aforementioned
issues, the largest vulnerability that Skype
presents is the fact that it forms direct connections
with unknown clients while also allowing these
unknown clients to connect directly to it. As
such, these connections can be exploited by
malicious users as well as viruses, trojans, and
worms. This was seen recently in September
2007 when the Ramex worm was able to easily
spread through the Skype network. This worm
not only disabled antivirus, malware, and
Windows Update software on hundreds of
thousands of Skype users, but it also installed a
key logger to steal private information from these
infected hosts [2]. As a result of these
vulnerabilities, corporations and government
entities alike actively try to restrict users from
running Skype on their networks through
firewalls and other olicies. However, due to
Skype’s complex connection algorithms, these
policies are largely ineffective and often easily
circumvented. The next section will reveal how
this algorithm functions, followed by a section on
a proven methodology to block it. Test results
and their significance are then presented before
concluding.

II. Background
Traditional means of using firewall rules to block
unwanted applications have been found to be
ineffective when applied to the Skype application
[3]. These results are due to the fact that Skype
was designed with a four-tier approach aimed
specifically at circumventing firewalls and
forming connections at all costs. At the
foundation of this connection design is the unique
application of the P2P model. Most P2P
applications Yahoo Messenger, AOL Instant
Messenger, etc.) form direct connections with
their authentication servers and then connect the
two users who wish to communicate. Skype on
the other hand, uses its client base to forward
traffic between its authentication server and
between two hosts wishing to communicate [4].
As a result, Skype clients always form indirect
connections between each other and the
authentication server. With this in mind, the first
tier of the connection design is the maintenance a
list of valid IP addresses that Skype can connect
through. Older versions of Skype maintained a

list of up to 200 IP address that were updated
every time a user logged in [4]. However,
gaining access to this list of addresses has been
made increasingly more difficult with newer
releases. Despite this fact, the basic principle
remains that firewall rules cannot be applied to
block connection attempts because the destination
addresses are continuously changing. Having
defeated IP address blocking, Skype also
conducts port hopping in order to circumvent any
port based firewalls. Although its most common
port is 33033, the application will alternate
through a small range of port numbers during a
single session. However, should it fail to
establish a connection on its desired ports, Skype
will fall back onto ports 80 (HTTP) and 443
(HTTPS) which are required for web traffic [5].
As a result of this second tier, port-based firewall
rules are also ineffective at blocking Skype. Tier
three of the connection design uses both TCP and
UDP traffic. During a normal session, the
application will use TCP traffic to establish a
connection and then will fall back on to UDP
traffic for the remainder of the session. Once the
initial connection is made, Skype can then use
TCP or UDP traffic interchangeably with respect
to the restrictions of the network it operates on
[5]. The final tier of Skype’s connection design is
its encryption. Skype uses 256-bit Advanced
Encryption Standard (AES) for its packets. After
the initial connection, all packets are encrypted
and decrypted with 1536 to 2048-bit RSA private
keys [5]. As a result, the likelihood of identifying
a packet signature once the connection is
established also becomes problematic. Thus, due
to the effectiveness of this four-tier connection
approach, the only known way to identify Skype
traffic is through Deep Packet Inspection (DPI)
conducted by Network Intrusion Detection
Systems (NIDS). Snort-Inline™, a widely used
NIDS, currently uses four rules to identify Skype.
The first two focus on web requests and identify
the “getnewestversion” and “getlatestverision”
requests that Skype generates when it forms a
connection [6]. The second two rules are ASCII
representations of packets that can be used to
identify Skype. They are 16 03 01 00 and 17 03
01 00. Although both of these are effective at
identifying Skype, these ASCII representations
fall short in two areas. First, they are generic to

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-5,2015

9

all P2P applications. Therefore, if a user chooses
to block packets containing these two strings, s/he
will inadvertently block a number of other desired
applications. Second, although baring packets
with these strings will block other applications, it
will not deter Skype. Should Skype not be able to
connect using these two strings, it will generate
new packets in order to circumvent the NIDS
rules. In summary, Skype’s connection approach
is extremely effective at circumventing all types
of firewalls and network policies. It cannot be
prevented from connecting through any network
connection that has access to the internet.

III. Methodology
In order to block Skype’s complex connection
algorithms, a new approach must be applied to the
traditional means of application blocking. Instead
of strictly using firewalls, or DPI methods alone,
a hybrid of the two must be utilized. The
following subsections will outline the components
needed to build such a system, the rule-sets that
must be applied to identify Skype traffic, and how
all the pieces fit together to form this hybrid
system. The methodology will then conclude
with a discussion of the testing results.
A. Components
There are four main components required for this
system to function properly. The first is a Host
computer with two Network Interface Cards
(NIC’s) and a Ubuntu operating system (a
Debian-based version of Linux). The two NIC’s
are used to allow traffic to pass through the host
machine for analysis. The second component is a
transparent network bridge that allows traffic to
traverse between the two interface cards while the
host itself maintains an IP address of 0.0.0.0.
This null IP address is a result of the bridge being
transparent and allows the host computer to also
remain transparent on the network. The Ubuntu
operating system was chosen for its compatibility
with Snort-Inline™, a widely used freeware
Network Intrusion Detection System that
conducts DPI. The fourth and final component of
this hybrid system is a firewall. For this design,
Iptables was chosen as it comes prepackaged in
most Linux installations. Additionally, this
firewall is most favorable to our design as rules
can be added and removed dynamically using
simple scripts. Having outlined the four main
components, that make up the Skype blocking

system, we can then place it on any network
between the Skype users and the outside internet.
One such example is depicted in Figure 1 below:

B. Rules
In order to actually block Skype, rule-sets must

be created in order to identify Skype packets
during DPI. To determine how to create these
rules, log on attempts were captured using a
program called Wireshark which records all of the
packets entering and exiting a computer.
Wireshark captures were conducted on different
computers, at different times, with different
Skype accounts, different Skype versions, and
different networks to ensure that all possible
scenario’s were accounted for in our data
collection. After collection, the data was then
analyzed using a program called Araxis Merge
which compared three separate log on attempts at
a time for consistencies. The results of this
comparison then prompted the creation of rules in
three categories: Keywords, Ports, and Content.
Keywords. When evaluating the data, it was
discovered that the current Snort-Inline rules for
identifying Skype update requests were still
applicable. Therefore, we created two rules to
reject any packets containing get newest version
combined with a string. Additionally, we then
choose to create a new rule that would reject any
packets containing the “Skype” string. This was
done to prevent any users operating behind our
system from viewing any website containing the
word Skype or from being able to download
newer versions of the software. However, it is

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-5,2015

10

important to note that this rule is optional as it
may prove to be an inconvenience. Ports. The
data also revealed a consistency in the ports that it
uses. Although we know that Skype can attempt
to operate on any port it chooses, the data showed
that port 33033 was used extensively for TCP
traffic. After checking to ensure no other
common applications use this port, two new rules
were created to block any TCP traffic coming or
going to this port. Content. The most interesting
discovery of the data comparison came in the
form of content strings. Although the “16 03 01
00” and “17 03 01 00” ASCII strings mentioned
above were easy to identify, the data also revealed
that an extra “00” was always included with those
strings. This is significant because it
differentiates Skype packets from all other P2P
applications. As such, two rules were created to
drop all outgoing packets containing “16 03 01 00
00” and all incoming packets containing “17 03
01 00 00”. After implementing these two new
rules with the keyword and port rules, we then
used Wireshark to collect more data to see how
Skype reacted when these packets were dropped.
In comparing these data captures, it was
discovered that should Skype not be able to use
these two content strings, the program tries to
send a new packet containing the ACSII strings:
“16 03 01 00 cd 41 03 00 09 80 40 04 08 c0 00”
and “00 0c 01 17 03 01 00”. Thus we created our
eighth rule to drop all outgoing packets
containing these strings. Upon implementation of
this final rule, we once again collected Wireshark
captures to see how Skype would adapt to the
new restrictions we created. After analyzing the
data, we found that Skype could not adapt to our
rule-set, as it continued to try and rebroadcast the
string that our last rule dropped. As a result, the
Skype would-be-user is met with this screen:

C. Application
By denying Skype from obtaining a connection,
the majority of the vulnerabilities associated with
this application are effectively neutralized.
However, since Snort-Inline™ only drops the
packets that match pre-established rules, our
solution has not yet blocked all connections with
the potentially malicious hosts that Skype
attempts to connect to. Consequently, we must
implement firewall rules to ensure that all
communication between the Skype client and the

unknown hosts are severed. This is achieved
using two Perl scripts. The first script parses the
Snort-Inline™ alert logs for the unknown host’s
IP address. The second script then takes that
address and dynamically creates Iptables rules
that drop all packets coming from or going to that
address. This essentially adds an extra layer of
security and ensures that malicious users can not
exploit the Skype client.

D. Testing

 After implementing this hybrid solution, it
was tested to meet three objectives. First, it was
tested to ensure that it was completely effective.
Our solution was tested multiple times on
different computers, with different user accounts,
at different times of day, with different versions
of Skype, and different networks, both wired and
wireless. Despite all of these differences, our
solution proved to be effective 100% of the time.
Second, our solution was tested for bandwidth
degradation. These tests revealed less than 3%
loss in upload bandwidth with no measurable loss
in download bandwidth. This loss was then
deemed acceptable under two considerations.
First, although there is a small loss in upload
bandwidth, network users running the Skype
application will likely have a larger impact on
network degradation. Second, and more
importantly, this loss in upload bandwidth can be
attributed to our use of a freeware NIDS (Snort-
Inline™). This consideration was supported by a
test that showed a consistent degradation while
Snort-Inline™ was run with no rules in place.
Although Snort-Inline™ is very efficient, it is by
no means an enterprise level solution. Should our
solution be applied to an Enterprise NIDS, we are
confident that the bandwidth degradation will be
significantly less. Finally, this solution was tested
to ensure that it did not interfere with any other
applications. Although it is impossible to test
every application available today, we tested our
solution against some of the most popular
applications in use. With our solution in place,
the following applications operated unimpeded:
AKO Chat Client, Aim, Aim Pro, Aim Express,
Yahoo Messenger, Mozilla Firefox, Internet
Explorer, Pandora, Windows Update, MS Office
2007, Symantec Antivirus and Firewall,

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-5,2015

11

Quicktime, Windows Media Player, VPN Client,
iTunes, Ruckus

IV. Contributions

 First this approach to application blocking
represents a break from the tradition means.
Normally firewalls and NIDS are applied
independently with no interaction between the
two. Although this approach has worked well in
the past, it falls short when applied to programs
with complex connection algorithms such as
Skype. The solution described above represents a
valuable contribution for network administrators.
Although not necessarily a new concept, this
theory of combining two tools already in use
(firewalls and NIDS) is greatly advanced by the
effectiveness of our solution. Additionally, the
combination of the two tools into one
complimentary system will reduce potential
vulnerabilities for network administrators.
Instead of just blocking ports and IP addresses
(firewalls) or just blocking individual packets
(NIDS), both can be handled simultaneously to
enhance the overall security of the networks they
protect. Second, this paper outlines a prototype
design for blocking Skype. Skype is known for
its ability to circumvent firewalls and to cause
significant vulnerabilities in the networks that it
operates on. Currently Skype can operate
unimpeded on any corporate or government
network that has access to the internet. As a
result, it has been labeled one of the largest
security threats operating on these types of
networks. The contribution of this prototype is
not only that it blocks Skype, but also that it is
completely scalable to any size network. For the
cost of one computer, this system can be built and
installed on any network in a matter of hours with
the only network downtime being the time it takes
to plug in two wires. Additionally, should
network administrators not wish to use this
complete solution, they can simply add the rules
identified above to their current NIDS in a matter
of minutes in order to immediately prevent Skype
users from operating on their networks. The
return on investment of this approach, the cost of
protecting all sensitive information contained on
government and commercial networks versus the
cost of losing or having it compromised, is
enormous.

V. Future work

The prototype described above was designed as a
complete solution to the problem of blocking
Skype. As such, it was designed to operate with
very minimal network administrator involvement.
However, future work for this prototype could
allow for customization by network
administrators so that it can be completely
incorporated into the networks they monitor.

Yet, it is important to note that this solution,
although complete for an IPv4 network, has not
yet been tested against an IPv6 network. As the
IP addresses vary between the two, and the
current solution has been designed solely using
IPv4 addressing, an IPv6 version of this solution
would definitely serve to be an area of
formidable future work. However, on a different
level, aside from the solution itself, a more
notable area of future research lies in combining
firewalls and NIDS into a hybrid network
protection system similar to our prototype. This
will allow for increased security as it both stops

immediate threats and allows the network
administrator to dynamically block continued
threats from the same source, thereby. increasing
the overall security of any network.

VI. Conclusion

 Skype is one of the largest threats existing on
government and commercial networks today.
This paper provides a unique and proven solution
to that security problem and not only blocks
Skype, but completely removes all of the
vulnerabilities associated with this application.
The return on investment of this solution is
significant when considering the price associated
with sensitive information being protected as well
as the easy scalability and low cost of this
solution.

VII. Acknowledgement

 We wish to extend special thanks to 2LT
Rucheera for research in support of this paper.

VIII. References

[1] Dario Bonfiglio, Marco Mellia, Michela
Meo, Dario Rossi, and Paolo Tofanelli,
“Revealing Skype Traffic: When Randomness

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-5,2015

12

Plays with You,” Presented at SIGCOMM 2007,
Koyto, Japan.

[2] InfoWorld: Bubbles the worm adds
keylogger. Internet WWW page, at URL: <
http://weblog.infoworld.com/
zeroday/archives/2007/09/bubbles_the_wor.html
>, September 2007.

[3] Blue Coat, White Paper – Best Practices for
Controlling Skype within the Enterprise. Internet
WWW page, at
URL:<http://www.onixnet.com/Blue%20Coat
/ImportMedia /downloads/whitepapers/
BCS_controlling_skype_wp.pdf > February 2006.

[4] Tapio Korpela, “IT Security Evaluation of
Skype in Corporate Networks,” TKK T-110.5290
Seminar on Network Security, Helsinki
University of Technology, December 2006.

[5] Salman A. Basat and Henning Schulzrinne,
“An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol,” Department of Computer
Science, Columbia University, September 2004.

[6] Snort: Vulnerability Research Team.
Internet WWW page, at URL: <
http://www.snort.org/vrt//>, June 2008.

