

ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
99

Abstract— Pattern matching is a commonly
used operation in many applications including
image processing, bioinformatics, computer
and network security, among many others.
Knuth-Morris-Pratt (KMP) algorithm is one
of the well-known pattern matching
techniques and it is intensively used in
computer and network security. Parallel
algorithms for accelerating pattern matching
have attracted a lot of attention due to their
cost effectiveness and enormous power for
massive data parallel computing. The
proposed work of pattern matching is done
using MPI on Intrusion Detection System
(IDS) like Snort and the extracted pattern
from Snort. Considering the parallel and
distributed architecture, we proposed a
method on which we perform very efficient
parallel algorithm for KMP algorithm. The
result shows the performance of parallel
algorithm is completely outplayed the
sequential performance using MPI.

Index Terms— Message passing Interface
(MPI), Graphics processing units (GPU),
pattern matching, parallel algorithm.

I. INTRODUCTION
 Network Intrusion Detection System (NIDS) is
widely used to protect computer systems from
network attacks such as malware, port scans, and
denial-of-service attacks. The most difficult part
of NIDS is to inspect the packet content against
the thousands of patterns. Because of that the
increasing number of attacks, traditional
sequential pattern matching algorithms is
inadequate to meet the throughput requirements
for high speed networks.
There were many approaches have been
proposed to accelerate the pattern matching. The

hardware approaches is classified into logic
architecture [1], [2], [3], [4] In this architecture
attack patterns are synthesized into logic circuits
which are typically implemented on Field
Programmable Gate Array (FPGA) to match
more than one pattern in parallel. In comparison,
memory architectures [5], [6], compile attack
patterns into a state machine and perform pattern
matching.
Recently, GPUs has been accepted to accelerate
pattern matching because of their enormous
power for massive data parallel computing. Wu-
Manber-like multiple-pattern matching
algorithm on GPUs achieved speedup two times
as fast as the modified Wu-Manber algorithm
used in Snort system.
The proposed work of pattern matching is done
using MPI on IDS like Snort and the extracted
pattern from Snort.

II. LITERATURE SURVEY

GPUs have been adopted to accelerate pattern
matching because of their enormous power for
massive data parallel computing. Pattern
matching is widely used in various applications
such as in Network intrusion Detection System
(NIDS), cancer pattern, natural language
processing, spam filter, word processor etc.

A. Naive Brute Force

It is one of the simplest algorithms which
having complexity O (m n). In this, the First
character of a pattern P with length m is aligned
with the first character of text T with length n and
then scanning is done from left to right after that
shifting is done at each step it gives less
efficiency.

B. Boyer Moore Algorithm
 It performs larger shift-increment whenever
there is a mismatch. It differs from Naive in the

PARALLEL ALGORITHM FOR ACCELERATING PATTERN
MATCHING USING MPI

1Rahul Pise, 2Manik Chavan
CSE Department, Walchand College of Engineering,

Sangli, Maharashtra
Email: 1rahoolpise@gmail.com, 2chavan_manik@yahoo.com

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
100

way of scanning. It scans the string from right to
left; unlike Naive approach that is P is aligned
with T such that the last character of P will be
matched to first character of T. If character is
matched, then the pointer is shifted to left to very
rest of the characters of the pattern. If a mismatch
is detected at say character c, in T which is not in
P, then P is shifted right to m positions and P is
aligned to the next character after c. If c is part of
P, then P is shifted right, so that c is aligned with
the rightmost occurrence of c in P. The worst
complexity is still O (m + n).

C. Knuth-Morris-Pratt (KMP)
 This algorithm is based on automaton theory.
Firstly a finite state automata model M is being
created for the given pattern.

 Fig.1 NFA for ACATG

 The input string T with ∑ = {A, C, T, G} is
processed through the model. If pattern is
presented in the text, the text is accepted
otherwise rejected. The following figure is a
NFA model, created in ACATG string pattern.
 The only drawback of the KMP algorithm is
that it doesn't tell the number of occurrences of
the pattern. The following Figure is the
equivalent DFA of the above NFA.

Fig. 2 Deterministic Finite Automata for

ACATG

III. MESSAGE PASSING INTERFACE (MPI)
 The aim of the MPI is to establish an efficient
and flexible standard for message passing which
is used for writing message passing programs. As
such, MPI is the vendor independent and having
message passing library. The benefit of
developing message passing software using MPI
helps to achieve design goals like portability,
efficiency and flexibility. MPI performs their
operations by using the methods such as

MPI_send, MPI_receive,
MPI_COMM_WORLD, MPI_Init and many
more by Using these kind of functionality the
processes communicate with themselves.

IV. PROPOSED WORK
 The proposed work is dealing with the
implementation of an efficient parallel algorithm
for the pattern matching KMP algorithm [7]. The
Naive pattern searching algorithm doesn’t work
well in the cases where we see matching
characters followed by a mismatch.
 The KMP matching algorithm uses
degenerating property i.e. pattern having
common sub-patterns appearing more than once
in the pattern and it improves the worst case
complexity to O (n). The idea behind KMP’s
algorithm is after some matches whenever we
detect a mismatch, we already know that few of
the characters in the text since they matched the
patterns before the mismatched. Then by using
this information we prevent matching characters
that would be anyway going to match.
 This algorithm usually does preprocessing
over the pattern pat [] and it constructs an
auxiliary array lps[] of size m which is the same
as the size of the pattern. In this the lps stands for
longest proper prefix which is also suffixed. For
each sub-pattern pat[0..i] where i = 0 to m-1,
lps[i] stores the length of the maximum matching
proper prefix which is a suffix of the sub-pattern
pat[0..i].
 If the matching pattern is long the computation
time gets increases to perform the matching and
we are matching the multiple patterns in this
paper.

V. PARALLEL IMPLEMENTATION OF KMP

ALGORITHM
The steps of parallel implementations using MPI
are given below:
1) Read the input file of Snort rules, prepare the

input stream of that file, obtain the file size,
allocate memory to contain whole file, copy
the file into the buffer and divide it across
processes using MPI_Bcast and
MPI_Barrier.

2) Prepare the input stream of pattern file and
get the number of lines.

3) Divide the input file among the processors.
4) Call the KMP search function and compute

the longest proper suffix and at last show the
matching patterns as output.

VI. RESULTS
The most time consuming part of KMP search is
LPS that is Longest Prefix Suffix. The following
results show the

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
101

Compute time of this algorithm.

Fig.3 Sequential Vs Parallel Time Comparison

graph

Fig.4 Scalability

 The above graph in fig. 3 shows the
comparison of sequential and parallel time in
which we have taken the input file in KB on X-
axis and Time(s) to compute in Y-axis by
keeping the pattern file constant. So the above
graph shows that the parallel computation time is
more efficient than the sequential time and the
performance of parallel is completely outplayed
the sequential performance.

The graph above in fig. 4 shows the number of
processes on X-axis and the time taken by that
process on Y-axis. In the above graph we have
taken the 10 processes and computed the time
taken by them in seconds. It shows that if we go
on increasing the number of processes, then the
performance gets better. In this way the
scalability is achieved.

VII. CONCLUSION
 In this project we have implemented the
Knuth-Morris-Pratt algorithm to match the Snort
pattern and the performance of the parallel

algorithm is far better than the sequential
algorithm for multiple patterns.
 The future work would be to use this technique
using CUDA (Compute Unified Device
Architecture).

 REFERENCES

[1] Reetinder Sidhu and Viktor K Prasanna. Fast
regular expression matching using fpgas. In
Field-Programmable Custom Computing
Machines, 2001. FCCM'01.The 9th Annual
IEEE Symposium on, pages 227-238. IEEE,
2001.

[2] Christopher R Clark and David E Schimmel.
Scalable pattern matching for high speed
networks. In Field-Programmable Custom
Computing Machines, 2004.FCCM 2004.
12th Annual IEEE Symposium on, pages
249-257. IEEE, 2004.

[3] Sarang Dharmapurikar and John Lockwood.
Fast and scalable pattern matching for
content _ltering. In Architecture for
networking and communications systems,
2005. ANCS 2005. Symposium on, pages
183-192. IEEE, 2005.

[4] Alfred V Aho and Margaret J Corasick.
E_cient string matching: an aid to
bibliographic search. Communications of the
ACM, 18(6):333-340, 1975.

[5] Nen-Fu Huang,Hsien-Wei Hung, Sheng-
Hung Lai, Yen-Ming Chu, and Wen-Yen
Tsai. A gpu-based multiple-pattern matching
algorithm for network intrusion detection
systems. Advanced Information Networking
and Applications-Workshops, 2008.
AINAW 2008. 22nd International
Conference on, pages 62-67. IEEE, 2008.

[6] Christopher V Kopek, Errin W Fulp, and
Patrick S Wheeler. Distributed data parallel
techniques for content-matching intrusion
detection systems. In Military
Communications Conference, 2007.
MILCOM 2007. IEEE, pages 1-7. IEEE,
2007.

[7] Knuth, Donald E., James H. Morris,
Jr, and Vaughan R. Pratt. "Fast pattern
matching in strings." SIAM journal on
computing 6.2 (1977): 323-350.

