

ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
87

EFFICIENT SOLVER FOR LINEAR ALGEBRAIC EQUATIONS ON

PARALLEL ARCHITECTURE USING MPI
1Akshay N. Panajwar, 2Prof.M.A.Shah

Department of Computer Science and Engineering, Walchand College of Engineering, Sangli, India
Email:1akshay.panajwar@gmail.com, 2medha.shah@walchandsangli.ac.in

Abstract
Most of the problems in engineering science
can be modelled using differential equations.
However quite often, the differential
equations are not amenable to direct
analytical solutions because of complex
geometries and boundary conditions. Thus
recourse is taken to approximate numerical
solution techniques. Depending on the
discretization of the domain, the numerical
model of the problem at hand could become
very large – sometimes running into
thousands/lakhs of degrees of freedom.
Solution of such a large set of equations is a
daunting task computationally and hence
efforts are directed towards development of
efficient strategies and use of High
Performance Computing (HPC). The present
work aims to implement an efficient solver for
system of linear equations with sparse,
symmetric and positive-definite matrix of
coefficients using the most prominent
Conjugate Gradient iterative method and
study the performance improvement obtained
in parallel computing framework using MPI
and GPU enabled CUDA technologies
considering a suitable example problem.
Index Terms: Message Passing Interface
(MPI), Compute Unified Device
Architecture(CUDA), Finite Element Method
(FEM), Conjugate Gradient (CG).

I. Introduction
In the past few years, The Message Passing

Interface(MPI) and GPU(Graphics Processing
Unit) enabled CUDA(Compute Unified Device
Architecture) is being widely used to develop
parallel programs on computing systems such as
clusters. Recent advances in high performance
computing resources, programming environments
for parallel architecture are well suited to perform
massively parallel computation on the large set of
equations. In this paper, we focus on solving large
set of linear algebraic equations of the form

 Ax=B (1)
Where the known n-by-n matrix ‘ܣ’ is sparse,
symmetric (i.e. ்ܣ=A), positive definite
(i.e.்ݔAx > 0 for all non-zero vectors ݔ ∈ ܴ௡),
and real, and ‘ܤ’ is known right hand side vector.

The equation arises in various fields of
engineering science such as complex structural
analysis problems in aerospace, civil and
mechanical engineering disciplines; complex fluid
flows for example in aerospace, ocean modeling
for tsunami applications, blood flow etc. To render
them suitable for computer based solution,
approximate numerical techniques are often
deployed. Efficient solution of such a large set of
algebraic equation enables us to build models that
are as close to reality as possible, thus enhancing
our understanding of scientific problems.
Computer based modeling and simulation is
recognized as the third pillar/paradigm of
scientific development. These linear algebraic
equations can be solved by direct method (Gauss
Elimination, LU decomposition etc.) or by

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
88

iterative method (Steepest Descent, Conjugate
Gradient)[1].The Non-stationary iterative
method (Conjugate Gradient, preconditioned
Conjugate Gradient) are more accurate than
Stationary methods (Jacobi, Gauss-Seidel)[2].
These methods are widely used to solve many
important settings such as finite differences,
finite element method [3] for solving partial
differential equations and structural and circuit
analysis.

The outline of the paper is as follows. Paper
includes a summary of prior works which
includes iterative methods (CG) to solve system
of linear equations, proposed work and finally
conclusion.

II. Literature Survey

2.1 Conjugate Gradient Method:

The Conjugate Gradient is the most widely used
iterative method to solve system of linear
equations of the form
 Ax=B
Where, ‘ܣ’ is symmetric and positive definite
matrix, ‘ݔ’ is unknown vector and ‘ܤ’ is the
known vector. The iterative method like CG are
suited for use with sparse matrix and if matrix is
dense then direct method using substitution are
efficient then iterative methods. The CG will take
at most ‘݊’ iterations to reach to the exact
solution. The algorithm for CG is shown in fig.1.

let, initially assume unknown vector ݔ଴ ൌ 0,
where each direction vector ‘݌௞’ gives new
approximate ‘ݔk+ଵ’ and also error ‘ݎ௞’. In each
step, using this error, the previous direction and
the property that any two directions are conjugate
to each other we find a new direction. We repeat
this process till the error ‘ݎ௞’ is sufficiently small.

Fig. 1 Conjugate Gradient Algorithm.

The CG method requires one SpMV and two inner
products. The most time-consuming part of this
algorithm is multiplication of sparse matrix 'A' and
dense vector 'p', hence efforts are directed towards
parallel computation and also it is more efficient to
store only the non-zero elements of a sparse
matrix. There is a number of common storage
formats used for sparse matrices discussed in [4].

III. Message Passing Interface

MPI[6] is language independent communication
protocol used to program on parallel computers to
scale the performance of the application. Message
passing is an activity where the processors
coordinate their activities by explicitly sending
and receiving messages by the functions
MPI_Send and MPI_Recv. It is the most common
method of programming distributed-memory
MIMD system. MPI is considered today’s
standard in message passing library.

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
89

IV. Sparse Matrix Storage Format

The matrix that arises from the discretization of
the differential equation has a large dimension,
usually more than thousands by thousands in size
and it is also sparse, and so a good sparse matrix
format doesn’t only reduce the space
requirement, but also enables faster sparse matrix
operations. Moreover, since most of the
simulation time is spent on solving sparse linear
system equations, choosing a good sparse matrix
format is essential to facilitate faster sparse
matrix solvers.

Fig. 2 Sparse Matrix.

Compressed Sparse Row (CSR) is popular and
the most general purpose storage format. This
can be used for storing matrices with arbitrary
sparsity patterns as it makes no assumptions
about the structure of the nonzero elements. Like
COO, this format also stores only nonzero
elements. These elements are stored using three
vectors: ‘val’, ‘col’ and ‘row_ptr’. The ‘val’ and
‘col’ vectors are same as for the COO format. For
an ‘M*N’ sparse matrix, the ‘row_ptr’ vector has
length of ‘M+1’ and stores indexes where each
row of the matrix starts in the ‘val’ vector. The
last entry of ‘row_ptr’ corresponds to the number
of nonzero elements in the matrix. There are
some advantages of using CSR over COO. The
CSR format takes less storage compared to COO
due to the compression of the row indices
explained in above Figure. Also, with the
‘row_ptr’ vector we can easily compute the
number of nonzero elements in the ݅th row as
‘row_ptr’ሺi+1ሻ െ ‘row_ptr’ሺ݅ሻ.

In parallel algorithms, ‘row_ptr’ values allow
fast row slicing operations and fast access to
matrix elements using pointer in direction. This
is a most commonly used sparse matrix storage

scheme. This is explained below:

V. Proposed Work

The present work aims to implement an efficient
solver for linear algebraic equations and study the
performance improvement obtained in a parallel
computing framework using a suitable example of
1D Bar problem using FEM (Finite Element
Method).

Solving FEM problem divided into following
steps
1. Divide problem into number of finite elements.
2. Generate local stiffness matrix.
3. Assemble to form the linear systems of
equations of the form Ku=f
4. Solve this linear system of equations by CG
method

Fig. 3 1D Bar Problem

Solutions to static linear structural mechanics
problems reduce to solving a linear system of
equations of the type:

Where ‘K’ is global stiffness matrix, ‘U’ is a
global displacement vector, and ‘F’ is the global
force vector. One end of bar is fixed and force (f)
is applied at other end of bar. Bar is divided into
‘݊’ number of finite elements area of cross
sections area (A) at each element. Hence the
matrix ‘ܭ’ which will be generated will be of size
݊.Equation ‘Ku=f’ is then solved by CG/PCG to
calculate displacement vector ‘ݑ’.

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
90

The memory requirements and the computational
time required to solve such equations increases
as the number of equations increases. To deal
with such large numerical problems in the Finite
Element Analysis, parallel computing on high
performance computer is gradually becoming a
main stream tool. Many parallel algorithms and
programs for finite element computation have
been developed on parallel computers, utilizing
vast numbers of CPUs or GPU cores to achieve
high speed up and scalability.

VI. Parallel Implementation of CG
Algorithm

Since CG, is an iterative method, the result of
next step is depend upon its previous step, hence
it is hard to simultaneously compute intermediate
steps, so we focused on distributing the data
across processor and ask them to involve in the
computation of its local part. As CG algorithm
involves two dot products and one matrix vector
multiplication per iteration and it can be easily
parallelized by using following MPI
communication operations:

Step1: Read the Matrix stored in CSR format and
Right hand side Vector from the file and divide it
across processors using MPI_Bcast and
MPI_Scatterv.

Step 2: All processors will compute the dot
product locally and do a sum reduction using
MPI_Allreduce.

Step 3: In Matrix Vector multiplication all
processors requires complete vector and this
vector is getting updated after each iterations. So
do multiplication in parallel using
MPI_Allgatherv, to gather all the local parts of
the vector into a single vector and then do the
multiplication.

Also, one can used MPI_Send and MPI_Recv to
gather vector but MPI_Allgatherv is known to be
an efficient way to communicate between
processes.[6]
But, as we are dealing with only 1D bar problem
which generates tridiagonal matrix, in this case
MPI_Allgatherv would not be efficient because

every processor requires only one or two elements
of vector ܲto carry out matrix vector
multiplication, so we used MPI_Isend and
MPI_Irecv to avoid communication overhead.

VII. Results

As the most time consuming part of conjugate
gradient method is SpMV, so to optimize Sparse
matrix vector multiplication we have used CSR
sparse matrix storage format which allow us to
perform operations only on the nonzero elements
present in the matrix. Figure (4) shows the
comparison of sequential and parallel
implementation using MPI of Conjugate Gradient
method for different sizes of tridiagonal matrix.

Fig. 4 Sequential vs Parallel

Figure(5) shows the scalability of parallel code
executed on 2 node cluster which has total 4 cpu's
and 8 cores's/cpu with matrix size N=504000
having non zero elements NNZ = 1511997 and the
speedup of parallel conjugate gradient method is
shown in Figure(6).

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
91

Fig. 5 Scalability of Parallel CG

Fig. 6 Speedup

VIII. Conclusions

In this project we have implemented a parallel
version of the Conjugate Gradient method using
Message Passing Interface and have tested it for
various sizes of tridiagonal matrix. Although we
could have used various libraries such as
SCALAPACK, PETSC for the implementation
of CG, but instead we choose to implement it by
our self so that we can be familiar with the issues
while developing parallel CG. So, according to
us there may be some communication overhead
either in MPI_Allgatherv or MPI_Isend and
MPI_Irecv whatever is used according to input
matrix. So efficient communication is must while
dealing with such huge sizes of matrices while
solving linear algebraic equations.

 References
[1] Jonathan Richard Shewchuk, "An Introduction

to the Conjugate Gradient Method Without the
Agonizing Pain", August 1994

[2] D. A. Gismalla, "Matlab Software for
Iterative Methods and Algorithms to Solve a
Linear System”, International Journal of
Engineering and Technical Research
(IJETR)2014 ISSN: 2321-0869

[3] P. Seshu, Textbook on Finite Element Analysis,
Prentice Hall of India, 12th reprint, 2014.

[4] P. Kumbhar, "Performance of PETSc GPU
Implementation with Sparse Matrix Storage
Schemes", EPCC 2011.

[5] Huaguang Song, "Preconditioning Techniques
Analysis for CG Method".

[6] “Message Passing Interface Forum,”
http://www.mpi-forum.org,2012.

