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Abstract 
Most of the problems in engineering science 
can be modelled using differential equations. 
However quite often, the differential 
equations are not amenable to direct 
analytical solutions because of complex 
geometries and boundary conditions. Thus 
recourse is taken to approximate numerical 
solution techniques. Depending on the 
discretization of the domain, the numerical 
model of the problem at hand could become 
very large – sometimes running into 
thousands/lakhs of degrees of freedom. 
Solution of such a large set of equations is a 
daunting task computationally and hence 
efforts are directed towards development of 
efficient strategies and use of High 
Performance Computing (HPC). The present 
work aims to implement an efficient solver for 
system of linear equations with sparse, 
symmetric and positive-definite matrix of 
coefficients using the most prominent 
Conjugate Gradient iterative method and 
study the performance improvement obtained 
in parallel computing framework using MPI 
and GPU enabled CUDA technologies 
considering a suitable example problem. 
Index Terms: Message Passing Interface 
(MPI), Compute Unified Device 
Architecture(CUDA), Finite Element Method  
(FEM), Conjugate Gradient (CG). 
 

I. Introduction 
In the past few years, The Message Passing 

Interface(MPI) and GPU(Graphics Processing 
Unit) enabled CUDA(Compute Unified Device 
Architecture) is being widely used to develop 
parallel programs on computing systems such as 
clusters. Recent advances in high performance 
computing resources, programming environments 
for parallel architecture are well suited to perform 
massively parallel computation on the large set of 
equations.  In this paper, we focus on solving large 
set of linear algebraic equations of the form 
 

 Ax=B                                       (1) 
Where the known n-by-n matrix ‘ܣ’ is sparse, 
symmetric (i.e. ்ܣ=A), positive definite 
(i.e.்ݔAx > 0 for all non-zero vectors ݔ ∈ ܴ௡), 
and real, and ‘ܤ’ is known right hand side vector. 

The equation arises in various fields of 
engineering science such as complex structural 
analysis problems in aerospace, civil and 
mechanical engineering disciplines; complex fluid 
flows for example in aerospace, ocean modeling 
for tsunami applications, blood flow etc. To render 
them suitable for computer based solution, 
approximate numerical techniques are often 
deployed. Efficient solution of such a large set of 
algebraic equation enables us to build models that 
are as close to reality as possible, thus enhancing 
our understanding of scientific problems. 
Computer based modeling and simulation is 
recognized as the third pillar/paradigm of 
scientific development. These linear algebraic 
equations can be solved by direct method (Gauss 
Elimination, LU decomposition etc.) or by 
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iterative method (Steepest Descent, Conjugate 
Gradient)[1].The Non-stationary iterative 
method (Conjugate Gradient, preconditioned 
Conjugate Gradient) are more accurate than 
Stationary methods (Jacobi, Gauss-Seidel)[2]. 
These methods are widely used to solve many 
important settings such as finite differences, 
finite element method [3] for solving partial 
differential equations and structural and circuit 
analysis. 

The outline of the paper is as follows. Paper 
includes a summary of prior works which 
includes iterative methods (CG) to solve system 
of linear equations, proposed work and finally 
conclusion. 

II. Literature Survey 

2.1 Conjugate Gradient Method: 

The Conjugate Gradient is the most widely used 
iterative method to solve system of linear 
equations of the form 
   Ax=B 
Where, ‘ܣ’ is symmetric and positive definite 
matrix, ‘ݔ’ is unknown vector and ‘ܤ’ is the 
known vector. The iterative method like CG are 
suited for use with sparse matrix and if matrix is 
dense then direct method using substitution are 
efficient then iterative methods. The CG will take 
at most ‘݊’ iterations to reach to the exact 
solution. The algorithm for CG is shown in fig.1. 
 
let, initially assume unknown vector ݔ଴ ൌ 0, 
where each direction vector ‘݌௞’ gives new 
approximate ‘ݔk+ଵ’ and also error ‘ݎ௞’. In each 
step, using this error, the previous direction and 
the property that any two directions are conjugate 
to each other we find a new direction. We repeat 
this process till the error ‘ݎ௞’ is sufficiently small. 
 

 

Fig. 1 Conjugate Gradient Algorithm. 

The CG method requires one SpMV and two inner 
products. The most time-consuming part of this 
algorithm is multiplication of sparse matrix 'A' and 
dense vector 'p', hence efforts are directed towards 
parallel computation and also it is more efficient to 
store only the non-zero elements of a sparse 
matrix. There is a number of common storage 
formats used for sparse matrices discussed in [4]. 

III. Message Passing Interface 

MPI[6] is language independent communication 
protocol used to program on parallel computers to 
scale the performance of the application. Message 
passing is an activity where the processors 
coordinate their activities by explicitly sending 
and receiving messages by the functions 
MPI_Send and MPI_Recv. It is the most common 
method of programming distributed-memory 
MIMD system. MPI is considered today’s 
standard in message passing library. 
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IV. Sparse Matrix Storage Format 

The matrix that arises from the discretization of 
the differential equation has a large dimension, 
usually more than thousands by thousands in size 
and it is also sparse, and so a good sparse matrix 
format doesn’t only reduce the space 
requirement, but also enables faster sparse matrix 
operations. Moreover, since most of the 
simulation time is spent on solving sparse linear 
system equations, choosing a good sparse matrix 
format is essential to facilitate faster sparse 
matrix solvers. 
 

 

Fig. 2 Sparse Matrix. 

Compressed Sparse Row (CSR) is popular and 
the most general purpose storage format. This 
can be used for storing matrices with arbitrary 
sparsity patterns as it makes no assumptions 
about the structure of the nonzero elements. Like 
COO, this format also stores only nonzero 
elements. These elements are stored using three 
vectors: ‘val’, ‘col’ and ‘row_ptr’. The ‘val’ and 
‘col’ vectors are same as for the COO format. For 
an ‘M*N’ sparse matrix, the ‘row_ptr’ vector has 
length of ‘M+1’ and stores indexes where each 
row of the matrix starts in the ‘val’ vector. The 
last entry of ‘row_ptr’ corresponds to the number 
of nonzero elements in the matrix. There are 
some advantages of using CSR over COO. The 
CSR format takes less storage compared to COO 
due to the compression of the row indices 
explained in above Figure. Also, with the 
‘row_ptr’ vector we can easily compute the 
number of nonzero elements in the ݅th row as 
‘row_ptr’ሺi+1ሻ െ ‘row_ptr’ሺ݅ሻ. 
 
In parallel algorithms, ‘row_ptr’ values allow 
fast row slicing operations and fast access to 
matrix elements using pointer in direction. This 
is a most commonly used sparse matrix storage 

scheme. This is explained below: 
 

 
 
 

V. Proposed Work 

The present work aims to implement an efficient 
solver for linear algebraic equations and study the 
performance improvement obtained in a parallel 
computing framework using a suitable example of 
1D Bar problem using FEM (Finite Element 
Method). 

 
Solving FEM problem divided into following 
steps 
1. Divide problem into number of finite elements. 
2. Generate local stiffness matrix. 
3. Assemble to form the linear systems of 
equations of the     form Ku=f 
4. Solve this linear system of equations by CG 
method 
 

 

Fig. 3  1D Bar Problem 

Solutions to static linear structural mechanics 
problems reduce to solving a linear system of 
equations of the type: 

 

 
 
Where ‘K’ is global stiffness matrix, ‘U’ is a 
global displacement vector, and ‘F’ is the global 
force vector. One end of bar is fixed and force (f) 
is applied at other end of bar. Bar is divided into 
‘݊’ number of finite elements area of cross 
sections area (A) at each element. Hence the 
matrix ‘ܭ’ which will be generated will be of size 
݊.Equation ‘Ku=f’ is then solved by CG/PCG to 
calculate displacement vector ‘ݑ’. 
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The memory requirements and the computational 
time required to solve such equations increases 
as the number of equations increases. To deal 
with such large numerical problems in the Finite 
Element Analysis, parallel computing on high 
performance computer is gradually becoming a 
main stream tool. Many parallel algorithms and 
programs for finite element computation have 
been developed on parallel computers, utilizing 
vast numbers of CPUs or GPU cores to achieve 
high speed up and scalability. 

 

VI. Parallel Implementation of CG 
Algorithm 

Since CG, is an iterative method, the result of 
next step is depend upon its previous step, hence 
it is hard to simultaneously compute intermediate 
steps, so we focused  on distributing the data 
across processor and ask them to involve in the 
computation of its local part. As CG algorithm 
involves two dot products and one matrix vector 
multiplication per iteration and it can be easily 
parallelized by using following MPI 
communication operations: 
 
Step1:  Read the Matrix stored in CSR format and 
Right hand side Vector from the file and divide it 
across processors using MPI_Bcast and 
MPI_Scatterv. 

 
Step 2: All processors will compute the dot 
product locally and do a sum reduction using 
MPI_Allreduce. 

 
Step 3: In Matrix Vector multiplication all 
processors requires complete vector and this 
vector is getting updated after each iterations. So 
do multiplication in parallel using 
MPI_Allgatherv, to gather all the local parts of 
the vector into a single vector and then do the 
multiplication. 
 
Also, one can used MPI_Send and MPI_Recv to 
gather vector but MPI_Allgatherv is known to be 
an efficient way to communicate between 
processes.[6] 
But, as we are dealing with only 1D bar problem 
which generates tridiagonal matrix, in this case 
MPI_Allgatherv would not be efficient because 

every processor requires only one or two elements 
of vector ܲto carry out matrix vector 
multiplication, so we used MPI_Isend and 
MPI_Irecv to avoid communication overhead. 
 

VII. Results 

As the most time consuming part of conjugate 
gradient method is SpMV, so to optimize Sparse 
matrix vector multiplication we have used CSR 
sparse matrix storage format which allow us to 
perform operations only on the nonzero elements 
present in the matrix. Figure (4) shows the 
comparison of sequential and parallel 
implementation using MPI of Conjugate Gradient 
method for different sizes of tridiagonal matrix.  
 

 

Fig. 4 Sequential vs Parallel 

 
Figure(5) shows the scalability of parallel code 
executed on 2 node cluster which has total 4 cpu's 
and 8 cores's/cpu  with matrix size N=504000 
having non zero elements NNZ = 1511997 and the 
speedup of parallel conjugate gradient method is 
shown in Figure(6). 
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Fig. 5 Scalability of Parallel CG 

 

Fig. 6 Speedup 

VIII. Conclusions 

In this project we have implemented a parallel 
version of the Conjugate Gradient method using 
Message Passing Interface and have tested it for 
various sizes of tridiagonal matrix. Although we 
could have used various libraries such as 
SCALAPACK, PETSC for the implementation 
of CG, but instead we choose to implement it by 
our self so that we can be familiar with the issues 
while developing parallel CG. So, according to 
us there may be some communication overhead 
either in MPI_Allgatherv or MPI_Isend and 
MPI_Irecv whatever is used according to input 
matrix. So efficient communication is must while 
dealing with such huge sizes of matrices while 
solving linear algebraic equations. 
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