

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
113

A METHOD FOR DISTRIBUTED REAL TIME AGGREGATIONS
1Shrikrashna S. Kadam, 2Manik K. Chavan

Depatrment Of Computer Science and Engineering, Walchand College of Engineering
Sangli, Maharashtra, India

Email:1Shrikrishna.kadam4@gmail.com, 2chavan_manik@yahoo.com

Abstrac—This paper focuses on various
approaches and proposes a method for
aggregations in distributed environment
and its importance for analysing the data.
Aggregation operations are the most used
operations in the analysis of big data.
Traditionally data collected over a period of
time was analysed by storing it in the data-
warehouse or database with the help of
aggregation operations. This paper mainly
focuses on the various aggregation
operations and their use in business
analytics and also the significance and role
of distributed computing to perform these
aggregations in real time to analyse
continuously streaming data to get analysis
results in the real time and improve the
decision making.
Index Terms— Real-Time Aggregations,
Distributed Computing, Analytics, AKKA
Actors, KPI’s(key performance Indicators)

I. INTRODUCTION

OLAP (Online Analytical Processing) systems
play a vital role of analytics in many industries
today. By aggregating the individual records of
a data set, they provide an non-rational multi-
dimensional view on the large volumes of data
stored and are used for the purposes of
analysis. Recently, the increasing availability
of machines with large amounts of main
memory and improving processor speeds have
led to a surge in the popularity of in-memory
OLAP systems like Scalable in-memory
aggregation(SIMEAN) by R. J. Kopaczyk et
al.[3], which can process multi-dimensional
queries faster than their on-disk counterparts.
However, while hardware capacities improve,
the amount of data to analyse continues to

increase. We can imagine that technological
inventions in the area of hardware resources
may not be able to keep up with this growth
and eventually could reach a halt. Rather than
buying the newest cutting-edge machines every
time, a better answer to the problem of data
volume growth can be to enable a solution to
scale out. This means that computation can
happen by using a cluster of relatively cheap
commodity hardware. Additional hardware
machines can then be connected to handle even
larger amounts of data.
The Problem: Continuously Growing Data
Volume:

While storage capacity and access speeds
for various medias (not only main memory) are
growing dramatically, and processing speeds
of processors have continued to improve, the
amount of data collected, stored and analysed
over a period of time has not remained at a
constant level, either. Will the advantages
gained by recent improvements of hardware
performance soon be dissipated by the growth
in data volume?

The Solution: Distributed Computing?

A naive solution to the problem of
continuous data volume growth would be to
just buy a better and more expensive machine
if storage space runs out and/or processing
time becomes inadequate. After all, one may
argue, computing hardware gets better every
year. However, there are good reasons why this
solution may not prove to be viable in the long
term:

1. Who guarantees that technological
innovation will keep up with the data
growth rate? We can, after all, imagine
that Moore's Law will not continue to

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
114

hold forever. Also, this does not help if
the rate of data volume growth exceeds
the growth in matching hardware
capabilities.

2. Buying highly specialized cutting-edge
hardware machine is bound to become
expensive, as the newest products in
the market are usually sold at higher
prices.

There is a cheaper alternative to this. We

can buy several low-cost commodity machines,
connect them together and make them work to
achieve both higher storage capacity and better
processing speed at a low cost i.e. distributed
system. This also solves the first problem:
although there is certain coordination overhead
between nodes in a distributed system, we can
continue to scale our systems independently of
the speed of innovation. J. Bernardino, et al [4]
proposed distributed system to improve query
performance in OLAP which works on
parallelizing queries. Golfarelli M. [5]
proposed technology such as BPM (business
process management) over the data-warehouse.
C. Burnay et al. [6] proposed a framework for
designing a system for business analysis by
using the OLAP concept. It represents KPI’s as
facts and aggregation results as measures and
schema for hierarchically organizing KPI’s.

II. OLAP CONCEPTS

OLAP systems helps in planning, problem
solving and decision making. OLAP deals with
large amount of historical data. OLAP queries
need to access large amount of data and need
to perform huge number of aggregation.
Following are some concepts used in OLAP
systems.

A. Cube
For analysing data we use cube in online
analytical processing (OLAP) as shown in
Fig.1 and Fig.2. OLAP cubes are more famous
in analytics for its feature of aligning data in
multiple dimensions. These cubes are used to
arrange the collected data for easy analysis
purpose. This cube can be of type ROLAP,
MOLAP or HOLAP. These cube categories are
formed on the basis of storage of aggregation
results. MOLAP stores source data and

Fig.1 OLAP cube

aggregation results into multidimensional
structure, ROLAP stores aggregation results
into relational data store, whereas HOLAP is
hybrid of ROLAP and MOLAP. We used
ROLAP cubes to analyse the data. Each
ROLAP cube has set of dimensions, measures,
attributes and hierarchies as shown in Fig. 3.
Dimensions represent the various fields of data
to be analysed. Each dimension has its
attributes. These dimensions can be of high
cardinality. Dimensions can also be time
dimensions whose attribute value is a time
value.

Fig. 2 OLAP cube with multiple dimensions
B. Hierarchy

In ROLAP cube, hierarchy is subset of
dimensions arranged in the hierarchical manner
for which aggregation values are to be
computed. Each hierarchy represents the
analysis perspective of a cube. To analyse cube
for a hierarchy of dimensions it need to
compute aggregation operation at every
dimension level called measure or metric. A
single hierarchy may have one or more
measures. Attributes are values of dimension.
Cube can contain multiple hierarchies. Level
represents the level of dimension in the
hierarchy. These cubes can be represented in
the XML format. XML file can contain more
than one cube representations. Each hierarchy
has its own set of dimensions as well as
measurements.

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
115

 Fig.3 Architecture of a cube with
showing its facets

<Cube>
 <Hierarchy>
 <Dimensions/>
 <Measurements/>
 </Hierarchy>
 <Hierarchy>
 <Dimensions/>
 <Time Dimensions/>
 <Measurements/>
 </Hierarchy>
</Cube>

C. Metrics

Metrics are the quantifiable measures that are
used to track and assess the status of a specific
business process. Every area of business has
specific metrics. These metrics are nothing but
the aggregation computations performed on the
KPI’s at every dimension level in a hierarchy.
Metric can be any mathematical measurement
such as Sum, Average, MAX-MIN, Standard
Deviation etc. These metric functions depend
on the analysis to be done.

Fig 4 Tree representation of hierarchy with
metric node

D. Metric Node
As shown in Fig. 4, it represents the tree
structure for a hierarchy. D1, D2, D3, D4 are
the levels of dimension in the hierarchy. These
dimensions are arranged in hierarchical
manner. D2’, D3’, D3’’, D3’’’, D4’ and D4’’

are different values of attributes for the
respective dimension levels. Thus branching in
the given tree depends on the cardinality value
of each dimension level. Node in the tree is
identified by its hierarchical key formed by its
position in the tree. e.g. for D4’ node
D1_D2_D3D4 will be the key. Each node
contains the values computed for the
aggregation metrics for its dimension level
therefore these nodes are called metric nodes.
Higher level node represents the aggregation of
metric nodes below that level. Thus in a
hierarchy every metric node is a unique entity
and it is the lowest granularity of output entity.

III. PARALALLIZATION
APPROACHES

A. Based on input data partitioning
In this approach of parallelization, the input
data is divided into non-overlapping parts and
partial results are computed for each part. The
process of aggregation is, in most cases, simple
to parallelize. For performing aggregations in
parallel we have to split the input into several
non-overlapping parts and process them
independently. There may be special design
requirements when parallelizing the
aggregation and this mainly dependent on the
aggregation function used which we want to
run in parallel for parallelizing it. Some of the
aggregation functions such as sum, minimum
or maximum of measures etc. are trivial. All of
these functions are binary operator functions
and satisfy the associativity property. In other
words, the order in which the operations are
performed does not matter. There are other
aggregation operations which are not easy to
parallelize but some of these operations are
derived operations which use basic aggregation
operations as their basic components. For
example, average is the derived aggregation
operation of sum and count which again use
operator which are associative in nature that’s
why parallelizing average aggregation
operation is not a tedious job. Likewise other
operations can be parallelized. This
parallelization strategy is solely based on input
data partitioning but there are some holistic
aggregation operations like TOP-K which are
non-trivial and not easy to parallelize by input
data partitioning. Due to this limitation this
parallelization strategy is not useful.

B. Based on input data partitioning

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
116

This approach of parallelization is to
parallelize the computation based on the output
partitioning. In this approach parallelization is
done by computing each non overlapping
output entity separately.
IV. PROPOSED WORK

Fig. 5 shows the architecture diagram of
proposed system. In the proposed work we
used second approach to parallelize analysis of
continuously streaming multidimensional time
series data according to the dimensionality of
OLAP cube [2], to compute measures required
for analysis of cubes due to the presence of
holistic measures. In this method we
parallelized analysis of cube at three places.

At first place we distributed the set of
hierarchies to each node in the cluster. Each
node will read the configuration of hierarchies
to be computed. This distribution is a named
distribution i.e. aggregation for any hierarchy
can be computed by any computing node if it is
enabled for computation on it. In this use case
some of hierarchies are highly computation
intensive while some are not. So to avoid skew
problem we made a unit of two hierarchies for
distribution in which one hierarchy is
computation intensive and other is not.
Hierarchies are distributed to nodes according
to these units.

 Fig. 5 Architecture of proposed system
In this method, we created a data publisher to
send the continuously streaming KPI’s called
Facts represented in the form of
multidimensional time series data. The data
received from the publisher is temporarily put
into the in-memory storage. These in-memory
KPI’s are forwarded to each subscribing nodes

in the cluster by listening to the put operation
preformed in in-memory storage.

In proposed work we have multiple cubes
to analyse with one or more hierarchies in
each. Streaming multidimensional KPI’s for
each cube are identified by matching its set of
dimension. At second and third place we
parallelized analysis of cubes by computing
aggregation operation at each dimension in a
hierarchy for this purpose we used actors
concurrency model.

1. Concurrent Actors
Today the use of actor based concurrent
models is on the peak. Typesafe’s AKKA[1] is
an open source framework used for real time
transaction processing. It is a highly scalable
and highly concurrent actor based model.
AKKA actors are lightweight entities with

Fig. 6 Architecture of actors in actor based

model
asynchronous and event driven processing.
Each AKKA actor has its mailbox which can
be bounded as well as unbounded. Actors can
be created for performing highly concurrent
tasks. These actors can be state-full as well as
stateless. Actors receive tasks in the order as
message in the mailbox. These received
messages are identified by using pattern
matching. Behaviour of AKKA actors can be
defined according to the received message.
These actors can be identified in the cluster by
using its name as unique id. In-order to achieve
maximum concurrency in an application we
have to create a thread for its lowest
granularity of tasks. Creating large number of
threads is not feasible in case of the highly
concurrent tasks due to the overhead of

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
117

maintaining concurrency while using large
number of threads. So, in this method at
second place of parallelization we created
multiple concurrent actors to create batch of
tasks and grouped by using the key. This batch
of tasks identified by key is distributed to actor
identified by same key as name because of this
specific type of task is always distributed to
specific actor which will guarantee the in order
processing of message according to their
arrival time.

At third place of parallelization we used
AKKA actors to compute and update
aggregations for each metric node in the
hierarchy tree. AKKA actors are created for
lowest granularity i.e. metric node. Actors
created executes concurrently to achieve
maximum thread utilization. Actor will
compute the aggregations results using
previous value present in persistence used and
KPI values in the multidimensional streaming
data. These updated aggregation results of each
metric node are stored in the in-memory
storage to reduce disk-access delays.

V. EXPERIMENTAL SETUP AND
RESULTS

For Experimental setup we used two machines
with Intel i7, 2 core and 8GB RAM as two
processing nodes. We measured the rate of
streaming KPI’s processed per second at an
average use of 30% of CPU. We used the
“thread-pool-dispatcher” as dispatcher service
in AKKA actors. Graph in Fig. 7 shows the
variation of processing rate with the
distribution of number of hierarchies on each
node.
VI. CONCLUSION

The applications and profits earned from
online analytical processing (OLAP) clearly
shows that it is one of the emerging
revolutionary technology trend that can be
used extensively in managing and analyzing
data to get vital information and knowledge.
All businesses, big or small, The instant access
to information and the apparent

Fig. 7 Results obtained by distributing
hierarchies
knowledge gained from the analyzed
information is priceless considered against the
cost involved in establishing such a setup.
Increasing speed of OLAP by distributing its
aggregation computation using commodity
hardware will increase the cost effectiveness of
such applications. Due to use of streaming
KPI’s it will be online, real-time

REFERENCES
[1] Typesafe, “AKKA actors documentation,"

Nov. 2014
[2] Z. Jing-hua et al, “OLAP aggregation

based on Dimension Oriented storage”,
IEEE symp. distributed and parallel
computing,2012

[3] R. J. Kopaczyk, “Scalable in-memory
aggregation," 2011.

[4] J. Bernardino, et al, “Data Warehousing
and OLAP: Improving Query Performance
Using Distributed
Computing”,publicpriorart.org/

[5] Golfarelli M., Rizzi S., Cella, “Beyond
Data Warehousing: What’s Next in
Business Intelligence?” Proceedings of the
7th ACM International Workshop on Data
Warehousing and OLAP.DOLAP ’04, pp.
1–6. ACM, New York (2004)

[6] C. Burnay, I..Jureta et al, “A framework for
operationalization of monitoring in
business intelligence requirement
engineering”, J Software System Model,
Springer June 2014

[7] http://web.iiit.ac.in/~hemani/files/olap.doc

