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Abstrac—This paper focuses on various 
approaches and proposes a method for 
aggregations in distributed environment 
and its importance for analysing the data.  
Aggregation operations are the most used 
operations in the analysis of big data. 
Traditionally data collected over a period of 
time was analysed by storing it in the data-
warehouse or database with the help of 
aggregation operations. This paper mainly 
focuses on the various aggregation 
operations and their use in business 
analytics and also the significance and role 
of distributed computing to perform these 
aggregations in real time to analyse 
continuously streaming data to get analysis 
results in the real time and improve the 
decision making. 
Index Terms— Real-Time Aggregations, 
Distributed Computing, Analytics, AKKA 
Actors, KPI’s(key performance Indicators) 

I. INTRODUCTION 

OLAP (Online Analytical Processing) systems 
play a vital role of analytics in many industries 
today. By aggregating the individual records of 
a data set, they provide an non-rational multi-
dimensional view on the large volumes of data 
stored and are used for the purposes of 
analysis. Recently, the increasing availability 
of machines with large amounts of main 
memory and improving processor speeds have 
led to a surge in the popularity of in-memory 
OLAP systems like Scalable in-memory 
aggregation(SIMEAN) by R. J. Kopaczyk et 
al.[3], which can process multi-dimensional 
queries faster than their on-disk counterparts. 
However, while hardware capacities improve, 
the amount of data to analyse continues to 

increase. We can imagine that technological 
inventions in the area of hardware resources 
may not be able to keep up with this growth 
and eventually could reach a halt. Rather than 
buying the newest cutting-edge machines every 
time, a better answer to the problem of data 
volume growth can be to enable a solution to 
scale out. This means that computation can 
happen by using a cluster of relatively cheap 
commodity hardware. Additional hardware 
machines can then be connected to handle even 
larger amounts of data. 
The Problem: Continuously Growing Data 
Volume: 

While storage capacity and access speeds 
for various medias (not only main memory) are 
growing dramatically, and processing speeds 
of processors have continued to improve, the 
amount of data collected, stored and analysed 
over a period of time has not remained at a 
constant level, either. Will the advantages 
gained by recent improvements of hardware 
performance soon be dissipated by the growth 
in data volume? 
 
The Solution: Distributed Computing? 

A naive solution to the problem of 
continuous data volume growth would be to 
just buy a better and more expensive machine 
if storage space runs out and/or processing 
time becomes inadequate. After all, one may 
argue, computing hardware gets better every 
year. However, there are good reasons why this 
solution may not prove to be viable in the long 
term: 

1.  Who guarantees that technological 
innovation will keep up with the data 
growth rate? We can, after all, imagine 
that Moore's Law will not continue to 
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hold forever. Also, this does not help if 
the rate of data volume growth exceeds 
the growth in matching hardware 
capabilities. 

2. Buying highly specialized cutting-edge 
hardware machine is bound to become 
expensive, as the newest products in 
the market are usually sold at higher 
prices. 

 
There is a cheaper alternative to this. We 

can buy several low-cost commodity machines, 
connect them together and make them work to 
achieve both higher storage capacity and better 
processing speed at a low cost i.e. distributed 
system. This also solves the first problem: 
although there is certain coordination overhead 
between nodes in a distributed system, we can 
continue to scale our systems independently of 
the speed of innovation. J. Bernardino, et al [4] 
proposed  distributed system to improve query 
performance in OLAP which works on 
parallelizing queries. Golfarelli M. [5] 
proposed technology such as BPM (business 
process management) over the data-warehouse. 
C. Burnay et al. [6] proposed a framework for 
designing a system for business analysis by 
using the OLAP concept. It represents KPI’s as 
facts and aggregation results as measures and 
schema for hierarchically organizing KPI’s. 

 
II. OLAP CONCEPTS 

OLAP systems helps in planning, problem 
solving and decision making. OLAP deals with 
large amount of historical data. OLAP queries 
need to access large amount of data and need 
to perform huge number of aggregation. 
Following are some concepts used in OLAP 
systems. 

A. Cube 
For analysing data we use cube in online 
analytical processing (OLAP) as shown in 
Fig.1 and Fig.2. OLAP cubes are more famous 
in analytics for its feature of aligning data in 
multiple dimensions. These cubes are used to 
arrange the collected data for easy analysis 
purpose. This cube can be of type ROLAP, 
MOLAP or HOLAP. These cube categories are 
formed on the basis of storage of aggregation 
results. MOLAP stores source data and  
 

 
Fig.1 OLAP cube 

 
aggregation results into multidimensional 
structure, ROLAP stores aggregation results 
into relational data store, whereas HOLAP is 
hybrid of ROLAP and MOLAP. We used 
ROLAP cubes to analyse the data. Each 
ROLAP cube has set of dimensions, measures, 
attributes and hierarchies as shown in Fig. 3. 
Dimensions represent the various fields of data 
to be analysed. Each dimension has its 
attributes. These dimensions can be of high 
cardinality. Dimensions can also be time 
dimensions whose attribute value is a time 
value.   

 

Fig. 2 OLAP cube with multiple dimensions 
B. Hierarchy 

In ROLAP cube, hierarchy is subset of 
dimensions arranged in the hierarchical manner 
for which aggregation values are to be 
computed. Each hierarchy represents the 
analysis perspective of a cube. To analyse cube 
for a hierarchy of dimensions it need to 
compute aggregation operation at every 
dimension level called measure or metric. A 
single hierarchy may have one or more 
measures. Attributes are values of dimension. 
Cube can contain multiple hierarchies. Level 
represents the level of dimension in the 
hierarchy. These cubes can be represented in 
the XML format. XML file can contain more 
than one cube representations. Each hierarchy 
has its own set of dimensions as well as 
measurements. 
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 Fig.3 Architecture of a cube with 
showing its facets 
 
<Cube> 
 <Hierarchy> 
  <Dimensions/> 
   <Measurements/> 
               </Hierarchy> 
 <Hierarchy> 
  <Dimensions/> 
  <Time Dimensions/> 
  <Measurements/> 
 </Hierarchy> 
</Cube> 

C.  Metrics 

Metrics are the quantifiable measures that are 
used to track and assess the status of a specific 
business process. Every area of business has 
specific metrics. These metrics are nothing but 
the aggregation computations performed on the 
KPI’s at every dimension level in a hierarchy. 
Metric can be any mathematical measurement 
such as Sum, Average, MAX-MIN, Standard 
Deviation etc. These metric functions depend 
on the analysis to be done. 
 

         
Fig  4 Tree representation of hierarchy with 
metric node 

D. Metric Node 
As shown in Fig. 4,  it represents the tree 
structure for a hierarchy. D1, D2, D3, D4 are 
the levels of dimension in the hierarchy. These 
dimensions are arranged in hierarchical 
manner. D2’, D3’, D3’’, D3’’’, D4’ and D4’’ 

are different values of attributes for the 
respective dimension levels. Thus branching in 
the given tree depends on the cardinality value 
of each dimension level. Node in the tree is 
identified by its hierarchical key formed by its 
position in the tree. e.g. for D4’ node 
D1_D2_D3D4 will be the key. Each node 
contains the values computed for the 
aggregation metrics for its dimension level 
therefore these nodes are called metric nodes. 
Higher level node represents the aggregation of 
metric nodes below that level. Thus in a 
hierarchy every metric node is a unique entity 
and it is the lowest granularity of output entity. 

III. PARALALLIZATION 
APPROACHES 

A. Based on input data partitioning 
In this approach of parallelization, the input 
data is divided into non-overlapping parts and 
partial results are computed for each part. The 
process of aggregation is, in most cases, simple 
to parallelize. For performing aggregations in 
parallel we have to split the input into several 
non-overlapping parts and process them 
independently. There may be special design 
requirements when parallelizing the 
aggregation and this mainly dependent on the 
aggregation function used which we want to 
run in parallel for parallelizing it. Some of the 
aggregation functions such as sum, minimum 
or maximum of measures etc. are trivial. All of 
these functions are binary operator functions 
and satisfy the associativity property. In other 
words, the order in which the operations are 
performed does not matter. There are other 
aggregation operations which are not easy to 
parallelize but some of these operations are 
derived operations which use basic aggregation 
operations as their basic components. For 
example, average is the derived aggregation 
operation of sum and count which again use 
operator which are associative in nature that’s 
why parallelizing average aggregation 
operation is not a tedious job. Likewise other 
operations can be parallelized. This 
parallelization strategy is solely based on input 
data partitioning but there are some holistic 
aggregation operations like TOP-K which are 
non-trivial and not easy to parallelize by input 
data partitioning. Due to this limitation this 
parallelization strategy is not useful. 

B. Based on input data partitioning 
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This approach of parallelization is to 
parallelize the computation based on the output 
partitioning. In this approach parallelization is 
done by computing each non overlapping 
output entity separately. 
IV. PROPOSED WORK 

Fig. 5 shows the architecture diagram of 
proposed system. In the proposed work we 
used second approach to parallelize analysis of 
continuously streaming multidimensional time 
series data according to the dimensionality of 
OLAP cube [2], to compute measures required 
for analysis of cubes due to the presence of 
holistic measures. In this method we 
parallelized analysis of cube at three places.  

At first place we distributed the set of 
hierarchies to each node in the cluster. Each 
node will read the configuration of hierarchies 
to be computed. This distribution is a named 
distribution i.e. aggregation for any hierarchy 
can be computed by any computing node if it is 
enabled for computation on it. In this use case 
some of hierarchies are highly computation 
intensive while some are not. So to avoid skew 
problem we made a unit of two hierarchies for 
distribution in which one hierarchy is 
computation intensive and other is not. 
Hierarchies are distributed to nodes according 
to these units.  

 

 Fig. 5 Architecture of proposed system 
In this method, we created a data publisher to 
send the continuously streaming KPI’s called 
Facts represented in the form of 
multidimensional time series data. The data 
received from the publisher is temporarily put 
into the in-memory storage. These in-memory 
KPI’s are forwarded to each subscribing nodes 

in the cluster by listening to the put operation 
preformed in in-memory storage.  

In proposed work we have multiple cubes 
to analyse with one or more hierarchies in 
each. Streaming multidimensional KPI’s for 
each cube are identified by matching its set of 
dimension. At second and third place we 
parallelized analysis of cubes by computing 
aggregation operation at each dimension in a 
hierarchy for this purpose we used actors 
concurrency model.  

1. Concurrent Actors  
Today the use of actor based concurrent 
models is on the peak. Typesafe’s AKKA[1] is 
an open source framework used for real time 
transaction processing. It is a highly scalable 
and highly concurrent actor based model. 
AKKA actors are lightweight entities with 

 
Fig. 6 Architecture of actors in actor based 

model 
asynchronous and event driven processing. 
Each AKKA actor has its mailbox which can 
be bounded as well as unbounded. Actors can 
be created for performing highly concurrent 
tasks. These actors can be state-full as well as 
stateless. Actors receive tasks in the order as 
message in the mailbox. These received 
messages are identified by using pattern 
matching. Behaviour of AKKA actors can be 
defined according to the received message. 
These actors can be identified in the cluster by 
using its name as unique id. In-order to achieve 
maximum concurrency in an application we 
have to create a thread for its lowest 
granularity of tasks. Creating large number of 
threads is not feasible in case of the highly 
concurrent tasks due to the overhead of 
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maintaining concurrency while using large 
number of threads.  So, in this method at 
second place of parallelization we created 
multiple concurrent actors to create batch of 
tasks and grouped by using the key. This batch 
of tasks identified by key is distributed to actor 
identified by same key as name because of this 
specific type of task is always distributed to 
specific actor which will guarantee the in order 
processing of message according to their 
arrival time.  

At third place of parallelization we used 
AKKA actors to compute and update 
aggregations for each metric node in the 
hierarchy tree. AKKA actors are created for 
lowest granularity i.e. metric node. Actors 
created executes concurrently to achieve 
maximum thread utilization. Actor will 
compute the aggregations results using 
previous value present in persistence used and 
KPI values in the multidimensional streaming 
data. These updated aggregation results of each 
metric node are stored in the in-memory 
storage to reduce disk-access delays. 

V. EXPERIMENTAL SETUP AND 
RESULTS 

For Experimental setup we used two machines 
with Intel i7, 2 core and 8GB RAM as two 
processing nodes.  We measured the rate of 
streaming KPI’s processed per second at an 
average use of 30% of CPU. We used the 
“thread-pool-dispatcher” as dispatcher service 
in AKKA actors. Graph in Fig. 7 shows the 
variation of processing rate with the 
distribution of number of hierarchies on each 
node. 
VI. CONCLUSION 

The applications and profits earned from 
online analytical processing (OLAP) clearly 
shows that it is one of the emerging 
revolutionary technology trend that can be 
used extensively in managing and analyzing 
data to get vital information and knowledge. 
All businesses, big or small, The instant access 
to information and the apparent 

 
Fig. 7 Results obtained by distributing 
hierarchies 
knowledge gained from the analyzed 
information is priceless considered against the 
cost involved in establishing such a setup. 
Increasing speed of OLAP by distributing its 
aggregation computation using commodity 
hardware will increase the cost effectiveness of 
such applications. Due to use of streaming 
KPI’s it will be online, real-time   
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