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ABSTRACT 
Database usage is growing rapidly in recent 
years due to the development in internet and 
cloud usage. Because of this answering to why 
some of the expected tuples are missing in 
query execution has received more attention. 
In this paper we deal with the answering of 
why not question in sql query with SPJA (ie, 
selection, projection, join, aggregation) 
constructs and providing a refined query that 
will include the missing tuples. This includes 
the tuple that contains both numerical and 
non-numerical attributes. Given the original 
SQL query and expected tuple, the algorithm 
will return the refined query whose result will 
include the expected tuple with the result and 
its penalty. The algorithm tries all possible 
combinations of changes on the original 
query like changing the SPJA construct ,K-
value, weighting vector or combinations of 
the above and it compares the result with the 
expected one .If it matches ,then it calculate 
the penalty for the respective query and 
return the one with least value. 
Keywords: why not question, missing tuple, 
penalty, refined query 

I.  INTRODUCTION 

A why-not question is being posed when a user 
wants to know why her expected tuples do not 
show up in the query result. Currently, end users 
cannot directly sift through the dataset to 
determine “why-not?” because the query 
interface (e.g., web forms) restricts the types of 
query that they can express. When end users 
query the data through a database application 
and ask “why-not?” but do not find any means 
to get an explanation through the query 
interface, that would easily cause them to throw 
up their hands and walk away from the tool 
forever—the worst result that nobody, especially 
the database application developers who have 

spent months to build the database applications, 
want to see. Unfortunately, supporting the 
feature of explaining missing answers requires 
deep knowledge of various database query 
evaluation algorithms, which is beyond the 
capabilities of most database application 
developers. In view of this, recently, the 
database community has started to research 
techniques to answer why-not questions on 
various query types. Among them, a few works 
have focused on answering why-not questions 
on Select-Project-Join-Aggregate (SPJA) SQL 
queries (e.g., [1], [2], [3], [4]) and preference 
queries (e.g., top-k queries [5], reverse skyline 
queries). So far, these proposals only work 
independently. For example, when answering 
why-not questions on top-k queries, the proposal 
in [9] assumes there are no SPJ constructs (e.g., 
selection, projection, join, and aggregation). 

In this paper, we study the problem of answering 
why not top-k questions in the context of SQL. 
Generally, a top-k query in SQL appears as: 

Where, 
ATTRIBUTES = A1, A2, A3 …AM, 
AGGREGATE (.) 
TABLE NAME = T1 …Tk 
COND = JOIN PREDICATE OR SELECTION 
PREDICATE.WEIGHING_VECTOR = 
WEIGHT VALUES 
 
To address the problem of answering why-not 
questions on top-k SQL queries, we employ the 
query refinement approach [4], [5],  

SELECT <ATTRIBUTES> FROM 
<TABLE NAME> WHERE <COND> 
AND ORDER BY 
<WEIGHTING_VECTOR>AND < LIMIT 
(K) VALUE> 
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Specifically, given as inputs the original top-k 
SQL query and a set of missing tuples, this 
approach requires to return to the user a refined 
query whose result includes the missing tuples 
as well as the original query results. In this 
paper, we show that finding the best refined 
query is actually computationally expensive.  
 
 Afterwards, we present efficient algorithms that 
can obtain the best approximate explanations 
(i.e., the refined query) in reasonable time. We 
present case studies to demonstrate our 
solutions. We also present experimental results 
to show that our solutions return high quality 
explanations efficiently. This paper is an 
extension of [5], which discussed answering 
why-not questions on top-k queries in the 
absence of other SQL constructs such as 
selection, projection, join, and aggregation. 

Related work: 
Explaining a null answer for a database query 
was set out by but the concept of why-not was 
first formally discussed in [1]. That work 
answers a user’s why-not question on Select-
Project-Join (SPJ) queries by telling her which 
query operator(s) eliminated her desired tuples. 
After that, this line of work has gradually 
expanded. In [2] and [3], the missing answers of 
SPJ [2] and SPJA [3] queries are explained by a 
data-refinement approach, i.e., it tells the user 
how the data should be modified (e.g., adding a 
tuple) if she wants the missing answer back to 
the result. In [4], a query-refinement approach is 
adopted. The answer to a why-not question is to 
tell the user how to revise her original SPJA 
queries so that the missing answers can return to 
the result. They define that a good refined query 
should be (a) similar — have few “edits” 
comparing with the original query (e.g., 
modifying the constant value in a selection 
predicate is a type of edit; adding/ removing a 
join predicate is another type of edit) and (b) 
precise — have few extra tuples in the result, 
except the original result plus the missing tuples. 
In this paper, we adopt the query-refinement 
approach as our explanation model and also 
apply the above similarity and precision metrics 

II. BASIC CONCEPTS 

As an example, consider table U in Fig. 1a and 
the following top-3 SQL query: 

 
 

Fig. 1b shows the ranking scores of all tuples in 
U and the top-3 result is {P3, P1, P2}. Assuming 
that we are interested in asking why P5 is not in 
the top-3, we see that using SPJA query 
modification techniques in [8] to modify only 
the SPJ constructs (e.g., modifying WHERE 
clause to be U.A140) cannot include P5 in the 
top-3 result (because P5 indeed ranks 4th under 
the current weighting w~ ¼j0:5 0:5j). Using our 
preliminary top-k query modification technique 
[9] to modify only the top-k constructs (e.g., 
modifying k to be four) cannot work either 
because P5 is filtered by the WHERE clause. 
This motivates us to develop holistic solutions 
that consider the modification of both SPJA 
constructs and top-k constructs in order 
a) Example table U: 

ID A B 
P1 240 60 
P2 235 60 
P3 340 70 
P4 100 70 
P5 140 100 
P6 150 50 

 
b) Ranking under original weightings 

ID 0.5*A + 0.5*B 

P3 205 

P1 150 

P2 147.5 

P5 150 

P6 100 

P4 85 

To answer why-not questions on top-k SQL 
queries. For the example above, the following 
refined query Q1 is one candidate answer: 

 

 
 
 
 
 

Qo:       SELECT U.ID FROM U 
WHERE U.A 205 
ORDER BY 0.5 * U.A + 0.5 * U.B 
LIMIT 3 

Q1: 
SELECT U.ID FROM U 
WHERE U.A 140  
ORDER BY 0.5 * U.A + 0.5 * U.B 
LIMIT   4
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Q0 is precise because it includes no extra tuple 
and is similar to Q1 because only essential edits 
were carried out: (1) modifying from U.A205 
to U.A140, and (2) Modifying k from three to 
four 

III. DESCRIPTION                        
3 ANSWERING WHY-NOT QUESTIONS 

ON TOP-K SPJ QUERIES 
            In this section, we first focus on 
answering why-not questions on top-k SQL 
queries with SPJ clauses. We will extend the 
discussion to why-not top-k SQL queries with 
GROUP BY and AGGREGATION in the next 
section.  
3.1 The Problem and The Explanation Model 
We consider a top-k SPJ query Q with a set of 
Select-Project Join clauses SPJ, a monotonic 
scoring function f and a weighting vector w~ 
¼jw½1 w½2  w½dj, where d is the number of 
attributes in the scoring function. For simplicity, 
we assume a larger value means a better score 
(and rank) and the weighting space subject to the 
constraint P w½i¼ 1 where 0 w½i 1. We only 
consider conjunctions of predicates P1 ^ ... ^ Pn, 
where each Pi is either a selection predicate “Aj 

op v” or a join predicate “Aj op Ak”, where A is 
an attribute, v is a constant, and op is a 
comparison operator. For simplicity, our 
discussion focuses on comparison because 
generalizing our discussion to other comparison 
operators is straightforward. The query result 
would then be a set of k tuples whose scores are 
the largest 
 (In case tuples with the same scores are tied at 
rank kth, only one of them is returned). 
Initially, a user issues an original top-k SPJ 
query QoðSPJo; ko; w~oÞ on a dataset D. After 
she gets the query result, denoted as Ro, she may 
pose a why-not question with a set of missing 
tuples Y ¼fy1;...;ylg (l  1), where yi has the same 
set of projection attributes as Qo. In this paper, 
we adopt the query-refinement approach in [8] 
so that the system returns the user a refined 
query Q0ðSPJ0;k0;w~0Þ, whose result R0 

includes Y and Ro, i.e., fY [ Rog R0. It is possible 
that there are indeed no refined queries Q0 that 
can include Y (e.g., Y contains a missing tuple 
whose expected attribute values indeed do not 
exist in the database). For those cases, the 
system will report to the user about her error. 
There are possibly multiple refined queries for 
being the answers to a why-not question hQo;Y 
i. We thus use DSPJ, Dk, and Dw to measure the 

quality of a refined query Q0, where Dk ¼ k0  ko, 
Dw ¼jjw~0  w~ojj2, and DSPJ is defined based 
on four different types of edit operations of SPJ 
clauses adopted in [8]: 

Following [8],   we do not allow other edit 
operations such as changing the projection 
attributes (because users usually have a 
clear intent about the projection attributes). 
Note that there is no explicit edit operation 
for removing a selection predicate, since it 
is equivalent to modifying the constant 
value in the predicate to cover the whole 
domain of the attribute. Furthermore, we 
also do not consider modifying the joins to 
include self-join. Let ci denote the cost of 
the edit operation ei, and we follow [8] to 
set c1 ¼ 1;c2 ¼ 3; c3 ¼ 5;c4 ¼ 7. So, DSPJ ¼ 
P1i4ðci niÞ, where ni is the number of edit 
operations ei used to obtain the refined 
query Q0. In order to capture a user’s 
tolerance to the changes of SPJ clauses, k, 
and w~ on her original query Qo, we first 
define a basic penalty model that sets the 
penalties spj, k and w to DSPJ, Dk and Dw, 
respectively, where spj þ k þ w ¼ 1: 
 
Note that the basic penalty model is able to 
capture both the similar and precise 
requirements. Specifically, a refined query Q0 

that minimizes Basic Penalty implies it is similar 
to the original query Qo. To make the result 
precise (i.e., having fewer extra tuples), we can 
set a larger penalty k to Dk such that modifying 
k significantly is undesired. 
The basic penalty model, however, has a 
drawback because Dk generally could be a large 
integer (as large as jDj) whereas Dw and DSPJ 
are generally smaller. One possible way to 
mitigate this discrimination is to normalize them 
respectively. 
[Normalizing DSPJ] We normalize DSPJ using 
the maximum editing cost DSPJmax. 

Definition 1 (maximum editing cost DSPJmax). 

Given the original query Qo, the maximum 
editing cost DSPJmax is the editing cost of 
obtaining a refined SPJ query QSPJ

max, whose 
(1) SPJ constructs most deviated from the SPJ 
constructs of the original query Qo (based on 
the four types of edit operations e1 to e4) and 
(2) with a query result that includes all missing 
tuples Y and the original query result Ro 
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     Example 1 (maximum editing cost DSPJmax).  

By referring to Fig. 3 (the join result of T1 ffl T2), 
the result Ro of the top-2 query is: {Gary, Alice}. 
Assuming the missing tuples set Y of the why-
not question is 

{Chandler}. Then, QSPJ
max is:1 

Definition 2 (worst rank with minimal edits). 
The worst rank with minimal edits ro is the worst 
rank among all tuples in Y [ Ro of a refined top-
k SQL query QSPJ

min, whose (1) SPJ constructs 
least deviated from the original query Qo 

( measured by c1 to c4), (2) using the original 
weighting w~o, (3) with a query result that 
includes all missing tuples Y and the original 
query result Ro, and (4) the modification of k is 
minimal. 
To explain why ro is a suitable value to normalize 
Dk, we first remark that we could normalize Dk 
using the cardinality of the join result of Qo 

because that is the worst possible rank. But to get 
a more reasonable normalizing constant, we 
look at Equation (1). First, to obtain the “worst” 
but reasonable value of Dk, we can assume that 
we do not modify the weighting, leading to 
condition (2) in Definition 2. Similarly, we do 
not want to modify the SPJ constructs so much 
but we hope the SPJ constructs at least do not 
filter out the missing tuples Y and the original 
query result Ro, leading to conditions (1) and (3) 
in Definition 2. So, based on Example 1, QSPJ

min 

is: 

We note that the following is not QSPJ
min 

although it also satisfies conditions (1) to (3) 
because its modification of k is from two to 
eight, which not minimal (condition 4) is 
comparing with the true QSPJ

min above: 

The problem definition is as follows. Given a 
why-not question hQo;Y i, where Y is a set of 
missing tuples and Qo is the user’s initial query 
with result Ro, our goal is to find a refined top-k 
SQL query Q0ðSPJ0;k0;w~0Þ that includes Y 
[ Ro in the result with the smallest Penalty. In this 
paper, we use Equation (2) as the penalty 
function. Nevertheless, our solution works for 
all kinds of monotonic (with respect to all DSPJ, 
Dk and Dw) penalty functions. For better 
usability, we do not explicitly ask users to 
specify the values for spj, k and w. Instead, we 
follow our early work [9] so that users are 
prompted to answer a simple multiple-choice 
question as illustrated  

Assume the default option “Never mind” is 
chosen. Table 2 lists some examples of refined 
queries that could be the answer of the why-not 
question to Qo in Example 1. According to the 
above discussion, we have DSPJmax ¼ refined 
queries, Q0

1 dominates Q0
2 because its Dk is 

smaller than that of Q0
2 and the other dimensions 

are equal. The best refined query in the example 
is Q0

4 (Penalty ¼ 0:11). At this point, readers 
may notice that the best refined query is in the 
skyline of the answer space of three dimensions: 
(1) DSPJi, (2) Dki, and (3) Dwi. Later, we will 
show how to exploit properties like this to obtain 
better efficiency in our algorithm. Penalty 
fumction is given by,  

                         3. 2 PROBLEM ANALYSIS 

Answering a why-not question is essentially 
searching for the best refined SPJ clauses and 
weighting in (1) the space SSPJ of all possible 
modified SPJ clauses and in (2) the space 

2. The number of choices and the pre-defined 
values for spj, k and w, of course, could be 
adjusted. For example, to make the result precise 
(i.e., having fewer extra tuples), we suggest the 
user to choose the option where k is a large value. 
 
 
TABLE 1 
Examples of Candidate Refined Queries 

SELECT B FROM T1, T2 
WHERE T1.A = T2.A AND D 400 
ORDER BY 0.5 * D + 0.5 * E 
LIMIT 2 

QSPJmax: 
SELECT B FROM T1, T2, T3 
WHERE T1.A = T2.A AND T1: A ¼ T3: A 
AND C 50 AND D 100 
AND E 50 
AND F 60 AND G 200 AND H  60 

QSPJmin: 
SELECT B FROM T 1, T2 WHERE T1.A = 
T2.A AND D 200 
ORDER BY 0.5 * D + 0.5 * E LIMIT 7 

 
 

SELECT B FROM T1, T2 
WHERE T1.A = T2.A AND D 100 

ORDER BY 0.5 * D + 0.5 * E LIMIT 8 
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(Option Never Mind (NM): spj ¼ 1=3, k ¼ 1=3, w 

¼ 1=3) 

Refined Query SPJi ki wi penalty

Q1({’T1 

T2,D>=200},7,|0.5 0.5|) 

1 5 0 0.35 

Q2({’T1 

T2,D>=100},8,|0.5 0.5|) 

1 6 0 0.41 

Q3({’T1 

T2,D>=200},7,|0.6 0.4|) 

1 5 0.14 0.38 

Q4({’T1 

T2,D>=200^C>=90}3,7,|0.5 

0.5|) 

4 1 0 0.11 

Q5({’T1 

T2,D>=200},3,|0.2 0.8|) 

1 1 0.42 0.20 

Fig1.T1 |><| T2 ranked under w~o ¼ j0:5 0:5j. 
 

Sw of all possible weightings, respectively. It is 
not necessary to search for k because once the 
best set of SPJ clauses and the best weighting w~ 
are found, the value of k can be accordingly set 
as the worst rank of tuples in Y [ Ro. The search 
space SSPJ can be further divided into two: (1a) 
the space of the query schemas SQS and (1b) the 
space of all the selection conditions Ssel. A 
query schema QS represents the set of relations 
in the FROM clause and the set of join predicates 
in the WHERE clause. A selection condition 
represents the set of selection predicates in the 
WHERE clause. 
Consider Example 1 again. The query schema 
QS0 that can include back the missing tuple 
(Chandler) would lead to a join result like Fig. 3. 
Originally, we have to consider eight predicates 
when dealing with attribute D, which are 
D  500, D  400, D  300, D  290, D  280, D  250, 
D  210, and D  100. By using Lemma 2, we just 
need to consider D  200 because among fyg[ Ro 

¼ { Chandler, Gary, Alice}, their attribute 
values of D are 200, 400, and 500, with 200 as 
the minimum. Similar for attribute E, by using 
Lemma 2, we just need to consider E  80. The 
above discussion can be straightforwardly 
generalized to other comparisons including , <, 
and >. 

     3.3 Skipping Progressive Top-k SQL 
Operations 

In PHASE-2 of our algorithm, the basic idea is 
to execute progressive top-k SQL queries for all 
selection conditions in 

Ssel
QS0 and all weightings in Sw. After the 

discussion in Section 3.3.2, we know them some 
progressive top-k SQL executions can stop 
early. We now illustrate three pruning 
opportunities where some of those executions 
could be skipped entirely. 
The first pruning opportunity is based on the 
observation from [15] that under the same 
selection condition seli, similar weighting 
vectors may lead to top-k SQL results with more 
common tuples. Therefore, if an operation 
TOPKðseli;w~j; until-see-ffyg[ RogÞÞ for w~j 

has already been executed, and if a weighting 
w~l is similar to w~j, then we can use the query 
result Rij of topkðseli;w~j;until-see-ffyg[ RogÞ 
to deduce the smallest k value for seli and w~l. 
Let k0 be the deduced k value for seli and w~l. If 
the deduced k0 is larger than the threshold 
ranking rT, then we can skip the entire 
TOPKðseli;w~l;stopping-conditionÞ operation. 

       
 
 
 
 
 
 
 
 
 
 

Fig1.Table T1 

 
 
 
 
 
 
 
 

Fig2.Table T2 
 

ID Name 

     
P1 

Alice 

P2 Bob 

P3 Chandler

P4 Daniel 

P5 Eagle 

P6 Fabio 

P7 Gray 

P8 Henry 

ID A B C CITY 
P1 90 400 80 bangalore 
P2 60 290 60 dindigul 
P3 90 200 100 Salem 
P4 50 300 70 bangalore 
P5 80 100 210 salem 
P6 70 250 70 madurai 
P7 50 280 50 bangalore 
P8 100 500 100 madurai 
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We illustrate the above by reusing our running 
example. Assume that we have cached the result 
sets of executed progressive top-k SQL queries. 
Let R1o be the result set of the first executed 
query topkðsel1;w~o;until-see-ffyg[ RogÞ and  

Ro ¼ft5;t6g. Assume that R1o ¼½t1;t2;t3;t4;t5;t6;y. 
Then, when we are considering the next 
weighting vector, say, w~1, in Sw, we first follow 
Equation (3) to calculate the threshold ranking 
rT. In Fig. 5, projecting w~1 onto slope PQ01o 

we get rT ¼ 4 þ 2 ¼ 6. Next we calculate the 
scores of all tuples in R1o using w~1 as the 
weighting. More specifically, let us denote the 
tuple in fyg[ Ro under weighting vector w~1 as 
tbad if it has the worst rank among fyg[ Ro. In the 
example, assume under w~1, the scores of t1, t2, 
t3 and t4 are still better than tbad, then the k0 value 
for sel1 and w~1 is at least 4 þ 3 ¼ 7. Since k0 is 
worse than rT ¼ 6, we can skip the entire 
TOPKðsel1;w~1;stopping-conditionÞ operation. 
The above caching technique is shown to be the 
most effective between similar weighting 
vectors [15]. Therefore, we design the algorithm 
in a way that the list of weightings Sw is sorted 
according to their corresponding Dwi values ( of 
course, w~o is in the head of the list since Dwo ¼ 
0). In addition, the technique is general so that 
the cached result for a specific selection 
condition seli can also be used to derive the 
smallest k0 value for another selection condition 
selj. As long as seli and selj are similar, the 
chance that we can deduce k0 from the cached 
result that leads to TOPK operation pruning is 
also higher. So, we design the algorithm in a way 
that seli is enumerated in increasing order of Dsel 
as well. 
The second pruning opportunity is to exploit the 
best possible ranking of fyg[ Ro (under all 
possible weightings) to set up an early 
termination condition for some weightings, so 
that after a certain number of progressive top-k 
SQL operations have been executed under sel i, 
operations associated with some other 
weightings for the same sel i can be skipped. 
Recall that the best possible ranking of fyg[ R o 

is ko þ 1, since jfyg[ R oj¼ ko þ 1. Therefore, the 
lower bound of Dk, denoted as DkL equals 1. So, 
this time, we project DkL onto slope   Penmin in 
order to determine the corresponding maximum 
feasible Dw value. We name that value as Dwf . 
For any Dw > Dwf, it means “fyg[   Ro has Dk < 
DkL”, which is impossible. As our algorithm is 
designed to examine weightings in their 

increasing order Dw values, when a weighting 
wj 2 Sw has jjwj  wojj > Dwf, topkðseli;w~j; stopping-

conditionÞ and all subsequent progressive top-k 
 
       
 
 
 
 
 
 
 
Fig3.Table T3 
 
SQL operations topkðseli;w~l;stopping-
conditionÞ where l > j þ 1 could be skipped. 
Reuse Fig. 5 as an example. By projecting DkL 

¼ 1 onto the slope PenQ01o, we could determine 
the corresponding 

Dwf value. So, when the algorithm finishes 
executing a progressive top-k SQL operation for 
weighting w~2, the algorithm can skip all the 
remaining weightings and proceed to examine 
the next selection condition. 
As a remark, we would like to point out that the 
pruning power of this technique also increases 
while the algorithm proceed 

IV. METHODOLOGY 

4. ANSWERING WHY-NOT 
QUESTIONS ON TOP-K SPJA 
QUERIES 

In this section, we extend the discussion to 
why-not top-k SQL queries with GROUPBY 
and   AGGREGATION. 

The Problem and The Explanation Model 
Initially, a user issues an original top-k SPJA 
query QoðSPJAo;ko;w~oÞ on a dataset D. After 
she gets the result Ro, she may pose a why-not 
question about a set of missing groups Y 
¼fg1;...;glg (l  1), where gi has the same set of 
projection attributes as Qo. Then, the system 
returns the user a refined query 
Q0ðSPJA0;k0;w~0Þ, whose result R0 includes Y 
and Ro, i.e., fY [ Rog R0. If there are indeed no 
refined queries Q0 that can include Y and Ro, the 
system will report to the user about her error. 

 

Algorithm 1. Answering a Why-not Top-k SPJ 
Question 

ID D E F 
P1 60 200 70 
P2 100 250 90 
P3 70 280 80 
P4 90 300 90 
P7 80 300 100 
P8 60 200 60 
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Input: 
Original query and the 
expected tuple 

1: Obtain QS0 and j value. 
2: if QS0 does not exist then 
3: return “cannot answer the why-not 
question”; 
4: end if 
5: switch(choice) 
6: case 1: 
7:  spja constructs are changed. 
8:  if Q_result equal to j then 
9:  calculate penalty; 
10:  if penalty <=min_penalty then 
11:                         min_penalty = 
penalty; 
12:  end if 
13: end if 
14:  Return query with min_penalty 
15:case 2: 
16: k value alone is changed 
17: if Q_result equal to j then 
18:  calculate penalty; 
19:  if penalty <=max_penalty then 
20:                         max_penalty = 
penalty; 
21:  end if 
22: end if 
23:  Return query with min_penalty 
24:case 3: 
25: weight values are changed 
26: if Q_result equal to j then 
27:  calculate penalty; 
28:  if penalty <=max_penalty then 
29:                         max_penalty = 
penalty; 
30:  end if 
31: end if 
 32:  Return query with min_penalty 
33:case 4: 
34: all are changed reandomly 
35: if Q_result equal to j then 
36:  calculate penalty; 
37:  if penalty <=max_penalty then 
38:                         max_penalty = 
penalty; 
39:  end if 
40: end if 
41: :Return query with min_penalty  

This algorithm will give the query that 
includes the expected tuple with least penalty. 

 
                           CONCLUSION 
In this paper, we have studied the problem of 
answering why-not questions on top-k SQL 
queries. Our target is to give an explanation to a 
user who is wondering why her expected 
answers are missing in the query result. We 
return to the user a refined query that can include 
the missing expected answers back to the result. 
Our case studies and experimental results show 
that our solutions efficiently return very high 
quality solutions.  
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