

ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME‐1,ISSUE‐1,2015

47

1Silvi Goel, 2Dr. Rinkle Aggarwal
Thapar University, Patiala

Email:1goelsilvi90@gmail.com, 2raggarwal@thapar.edu

Abstract- With rapid advancement in
technology, the expectations from software
industry have seen a drastic change.
Providing interactive and maintainable
solutions is an essential need of hour. A
graphical interface to the system is an
appropriate solution to such needs. GUIs are
playing an important role in making systems
more interactive, configurable and
maintainable. They are not only benefiting
the end-users, but can also contribute to the
project lifetime, offering help at the developer
end. Thus, reliability and accuracy of GUI
must be thoroughly ensured. With lesser
complexity, such assurance was easy with
manual efforts, but present scenario of
complex systems, makes it very questionable.
Nowadays, testing must be approved with a
full proof plan and its completion is subject to
bias if done manually. In this paper,
accuracy, fault-tolerance, control coverage,
event coverage and functional coverage are
primary objectives while solving the
overhead of script based automated testing,
so that human intervening can be minimized
and testing process can be scalable and
sufficiently complete to support multiple
releases.
Index Terms- GUI, Accuracy, Fault-
tolerance, Functional coverage, Control
coverage.

I. INTRODUCTION

Increasing complexity of software systems pose
a big challenge to the companies on various
fronts such as ease-of-use, maintainability of
system, proceeding with legacy codes.
Graphical User Interface (GUI) establish a
friendly way of communication between end-
users and ease the understanding about existing
system if a new candidate is employed for
system up-gradation. Thus a well-built GUI can
directly impact the client and developer
significantly. Moreover efficiency and quality
of software highly depend on the
communication interface, quality of
development and testing techniques adopted by
developer. Minimization of risk factor is another
criteria for evaluating the applicability of the
techniques adopted. In this paper, testing the
GUI components is being put to focus. But
making an appropriate choice is not as easy since
GUI testing bring along a number of challenges.
Certain factors that play determining role while
opting for a testing strategy are the technology
used for GUI design, deployment platform,
structural profile of GUI [1] , complex event
interactions and functional design of GUI.
Increasingly complex GUI systems are now
beyond reach of manual testing. Software
quality parameters are now more quantitative
and a number of trade-offs are being made as per
project requirements. Thus an automated tested
system can evaluate the System Under
Observation with lesser human efforts and errors
that may crawl-in due to manual bias.

A NOVEL APPROACH FOR GUI TEST AUTOMATION USING
CONSCIOUS DEVELOPMENT CONSTRUCTS

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME‐1,ISSUE‐1,2015

48

II. TESTING MODES

Testing the GUI can be done in manual or
automated mode. Pros and cons are being
discussed in the section and a justified switch to
automated test suite can be thus ruled out.
Manual Testing is a tedious task executing a
number of test cases manually designed by
engineer and requires the tester to possess ample
patience, good observing power, creative, open-
minded, innovative, conjectural and skillful at
job [2]. Despite being time consuming and that
is takes a lot of focus and effort, reliability of
manual testing is questionable, as far as the
complexity of ongoing projects in the domain, is
observed. Thus, it makes almost no alternative
to approve manual testing, when it cost too much
without being reliable and may get error-prone
and highly error-prone. While manual testing
have serious implications on system quality,
automated testing offer a number of advantages.
Automated Testing is reliable and faster as
compared to manual option. It can facilitate
better regression testing of system, with
considerable effort on one-time design of test
suite automation. Automating the GUI testing, if
implemented properly, can save a lot of time,
cost and effort.
Significant benefits of automated test suite
are[3]:
A. Improved quality of system.
B. Reduced testing effort.
C. Support for testing over a number of

platforms.
D. Repeatedly generation of certain states of

system for exploration becomes significantly
easy.

E. Impact of upgraded test cases can be easily
studied.

III. CHALLENGES IN TEST
AUTOMATION

A number of challenges are inherent from the
complexities in GUI design and test automation.
Completeness, accuracy and reliability become
the most crucial parameters for software quality
in such a case. Few constraints are such that they
totally impact the choice.

Challenges associated with GUI TEST
AUTOMATION

A. Programming Language
The chosen programming language for
implementation play a very important due to its
dependency on compiler and third-party support.
A variety of programming paradigms can make
an approach far easy in one language and
extremely difficult in another. For instance, a
good alternative for Java based GUI may not
prove as good for VB based GUI. A change in
language may simply need the developer to
modify whole recording structure of test suite.
B. Platform
The operating system platform would also come
into play if GUI relates to some kind of system
softwares or if it is .closely coupled with the
underlying operating system.
C. Structural Profile
Structural profile of GUI [1] constitutes the
components planted on the interface and it
becomes a concern when that is dynamically
changing throughout the user interaction. In
such case monitoring of changes and the
complex event interactions may need to be
published into reports for proper tracking.
Although a number of tools for automated
testing are available, there is not much
significance of them for many companies.It is so
because many of them are based on test scripts
which are either developed or they may have
been created using recorded and replayed
approach, which fails to counter the impact of
changing layouts [3].

IV. LITERATURE REVIEW
A number of approaches for automated GUI
testing have been worked upon in recent times.
L. White and H. Almezen [4] has described the
user interactions be framed as Complete
Interaction Sequences [4], while Z. F. Yang, Z.
X. Yu, B. B. Yin, C. G. Bai [1] gives a Bayesian
model for covering each-state, of the system.
While CIS may be time consuming in systems
where complex user-interactions are involved,
Bayesian model also require the system source
code to be frozen during the test execution.

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME‐1,ISSUE‐1,2015

49

V. METHODOLOGY
The methodology in this paper revolves around
the effort to develop a product keeping in mind
the faults that may later arise. The effort has
been made to allow the system to take major
share of responsibility once it is out for testing
phase. Thus a development strategy is being
modelled that can facilitate easier testing
automation. Basically, the paper views GUI test
in three perspectives as depicted in Fig. 1.

Fig.1 Three perspectives for GUI Testing

A. CONTROL AND EVENT BASED

COVERAGE

The term “control” refers to the layout
components that may dynamically change with
unpredictable user interactions and event fires.
As soon as a control is initialized in memory, it
get registered with the “Binding Table” with
certain set of attributes, that further help not only
to execute automated set of tests, but also
facilitate easier troubleshooting while failures.
To ensure that no in-memory control is missed
in the Binding Table, a provision to cross-check
from the stack is employed.

The “Binding Table” concept ensure that each
dynamically added control, during interaction of
user with GUI, is being in the list of testing
program. Whenever an event is invoked on a
control, certain function is performed. Is_update
variable will act as indicator to the completion
of event testing for a particular control. The only
effort it adds is a single line call code to
initializer function, which allocates memory and
registers the controls.

Pseudo code depicting Binding Table Structure
is depicted in the Fig.2.

Fig. 2. Binding Table Structure using
pseudo-code

Fig. 3 depicts brief log of Binding Table contents
enabled during test mode operation.

Fig. 3. Sample log of Binding Table contents

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME‐1,ISSUE‐1,2015

50

B. FUNCTIONAL COVERAGE

Functional coverage of system is ensured using
a script of milestones for each function. Say ‘n’
functions are the features provided in the system,
it will take approximately O(n) flags in the script
to be coded individually. This do not need any
extra effort during testing, instead it can be
accommodated in the design phase as a tracker
for various functions.

It is always better for a developer to keep a check
on tracking requirements while preparing a
design so that, a reliable structure for test plan is
prepared by the time design document is
finalized. It can also contribute to automated
execution of test-case generated.

Fig. 4 show the xml syntax in which trackers for
every function and every branch of it can be
placed into a milestone-holder file. This file will
later act as input to the function coverage test
module. This can also be maintained as an in-
memory xml to save the complexity of file
operations.

Basically dump_milestone() would be
responsible to generate this file.

Fig. 4. XML format for milestone
representation used to dump branch

information.

Brief description of the fields in the syntax are
as follows:

1. Signature_By_Function

It can take the value as any alias representing a
milestone to a particular feature of the system. It
must be ensured that each function should be
tagged with a unique milestone.

2. Branch Signature

It will place the milestone at each branch of a
function. Branch includes all the choice-based
constructs of the function.

3. Tested

It can take the value as 0 or 1, indicating if the
testing has been done after latest update or not.
It will be set to 0 as soon as updated flag
corresponding to it is set to 0.

4. Specific Input

Any special inputs to the branch if required for
testing can be dumped into this field. It will ease
the test case generation of specific scenarios.

5. Updated

It can take the value as 0 or 1, indicating if a
repeated testing of a function is required after
change in system state. It automatically set to 1
if the tested option is updated.

Associated API Model for the System:

Fig. 5. API model associated with Functional
Coverage Mechanism

If not dumped into the file, the in-memory
mile_stone_xml can also be directed into the test
case generator. This mile_stone based
mechanism can be controlled to be executed
only in test mode using TEST_ENABLE flags.

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME‐1,ISSUE‐1,2015

51

C. TEST CASE GENERATION

Test case generator is primarily placed to
automatically generate inputs for the functions,
and test all the branches of it without human
intervention. It is particularly meant to ensure
that no control fails the system under abnormal
set of inputs and no specific case of inputs is
missed in the system. It thoroughly checks each
function with positive and negative inputs and
any specific cases for the function under test are
taken from the milestone data-structure. Positive
inputs can be supplied using boundary values
and a random value generator functions for each
data type. Negative inputs can be provided with
out-of-bound values or garbage value generator
to the function.

VI. CONCLUSION AND FUTURE
SCOPE

A lot of efforts are being put towards providing
user-friendly interfaces to complex system
designs. The testing methodology and its
automation is a center of focus because many of
the systems that are proprietary systems of
companies, are still in dire need of appropriate
methods for testing. In such a scenario, we
present a plan to incorporate helping structures
during development phase, which can later make
the system being more responsive in the testing
phase, and would contribute to a scalable code
for testing scripts.

REFERENCES
[1] Z. F. Yang, Z. X. Yu, B.B. Yin, and C.G.

Bai, GUI Reliability Assessment based on
Bayesian Network and Structural Profile,
International Journal of Signal Processing
and Pattern Recognition, Vol. 8, No. 1, pp.
225-240, 2015.

[2] R. M. Sharma, Quantitative Analysis of
Automation and Manual Testing,
International Journal of Engineering and
Innovative Technology, Vol.4, Issue 1,
ISSN: 2277-3754, 2014.

[3] G. M. D. Gandhi, A. S. Pillai, Challenges in
GUI Test Automation, International Journal
of Computer Theory and Engineering, Vol.6,
No.2, April 2014.

[4] H. Almezen, L. White, “Generating Test
Cases for GUI Responsibilities Using
Complete Interaction Sequences”, 11th
International Symposium on Software
Reliability Engineering.

